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Abstract

The Stratospheric Shield was proposed as a geoengineeriagpt to control the Earth’s cli-
mate and reverse global warming. This approach seeks tseetilphur dioxide (Saerosols
in the stratosphere to decrease the amount of sunlightehahes the surface of the Earth. It was
proposed that this be done by pumping liquefied m the ground to the stratosphere in a 30
kilometre long hose supported by aerostats.

In this paper we evaluate the dynamic stability of a hose ¢ostty considering distributed
supportive aerostats and an atomiser nozzle that forcaedia dascharge of the fluid at the free
end of the pipe. We modelled the pipe as a taut string congdind using the finite element
method.

With a nozzle that discharges the flow straight through, waéothat the pipe loses stability
by buckling when the tension becomes null at least at onditotalong its length. This insta-
bility can be avoided by having a ficient minimum tensioffo throughout the whole length of
the pipe. The distribution of aerostats does not influenisatistability but it modifies the mode
shapes andffects the complex frequencies. The atomiser discharginficiveadially at the tip
of the pipe has forféect to remove the possibility of an instability; its use isghrecommended.
Moreover, we showed that the Coriolis damping can be sigmifi@and that by appropriately
selecting the number of aerostats as well as the dimens®fi®v velocity, stability can be in-
creased. With this in mind, a functional hose to the sky cta@dlesigned to maximise Coriolis
damping and thus passively damp the motion of the pipe dugrtinfy from the wind.

Keywords: Linear stability, fluid-structure interactions, hose te #ky, stratospheric shield

1. Introduction

The dynamics of pipes conveying fluid has been the object sareh since at least the
late 1930s. Initially, the topic attracted researchergriest because it displayed interesting
dynamical behaviour by means of simple mathematical modeienable to simple analytical or
guasi-analytical solutions and to validations via rekinsimple experiments Paidoussis (1993,
1998, 2008).

Most of the seminal research on the fundamentals, conductdte 1950s and 60s, was
curiosity-driven. Applications, making use of the fruitstbat research emerged 30, 40 and 50
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years later, and they continue popping up at an accelerpting: on ocean mining, drilling for
oil and gas, carbon sequestration in the ocean, ymiarm applications (Paidoussis, 2010), and
most recently on the “Stratospheric Shield” (Intellectdahtures, 2009) which is the subject of
the present study.

The stratospheric shield which has been the subject of & kttention in the popular press
(Bradbury, 2008; Levitt and Dubner, 2009) is a geoengimgeconcept to control the Earth’s
climate and reverse global warming. This approach seeksc®ase the amount of sulphur
dioxide (SQ) aerosols in the stratosphere, so as to decrease the anfeuimiight that reaches
the surface of the Earth. It amounts to reproducing tfeceof a large volcanic eruption such as
that of Mount Pinatubo in the Philippines in 1991. The cogldfect of limiting solar radiation
is immediate and not long-lasting, as sulphur dioxide ad@sagmain in the stratosphere for only
a few years (Robock, 2002). By artificially pumping aerosolshe stratosphere, the blocked
sunlight could partially iset the climate warming due to greenhouse gases.

On the downside, geoengineering through the release gfa®sols could have some se-
rious adverse féects on the the hydrological cycle of the Earth. Potentiallgould lead to
widespread drought and reduced freshwater resourcesh@mérand Dai, 2007). Moreover, the
concept of humans purposely modifying the climate raisgsoitant ethical issues (Crutzen,
2006; Shepherd, 2009). The consequences and implicatfogso@ngineering are not com-
pletely understood and require additional research bedageimplementation should be at-
tempted (Shepherd, 2009). On the other hand, better infbdaeision will result from further
analyses to assess the feasibility of the technology. Shigat we pursue here.

Where the fluid-conveying pipe comes into play in the stiaitesic shield is that it was sug-
gested as the simplest and most cdtative way to deliver tons of S{aerosols in the strato-
sphere (Intellectual Ventures, 2009; Davidson et al., 20[t2s proposed to use a 30 kilometre
long hose only a few centimetres in diameter, held up velyibg aerostats (or balloons) to carry
100,000 metric tons of SQup to the stratosphere every year. It is the goal of the ptesgrer
to investigate theoretically the dynamic stability of sacklender hose and to see if it would be
subject to garden-hose instability (Paidoussis, 1998).

This problem is related to that of tethered aerostat stglilliamson and Govardhan (1997)
and Govardhan and Williamson (1997) showed that a teth@teets could oscillate significantly
when subjected to steady flow due to vortex-induced vibnatioLambert and Nahon (2003)
studied numerically through a lumped-mass approach thénsam dynamics of a streamlined
aerostat tethered to the ground by one single tether. Thmlgeamic forces on this stream-
lined aerostat were modelled with empirical lift, drag andment coéicients and with no
vortex-shedding forcing considered. The stability analghowed the system to be stable at
all wind speeds. Coulombe-Pontbriand and Nahon (2009) tieedpproach of Lambert and
Nahon (2003) to model a spherical aerostat and added a glalismrcing to account for vortex-
shedding excitation. In essence, the design of an aerogtanhfluence its aerodynamic and
inertial properties and if its shape is blunt, vortex-inddwibrations can occur. Because the
effect of wind is so dependent on the exact geometry of the adrost leave theseffiects for
later studies.

In the current study, we focus our attention on tifieet of the internal flow on the hose
system. We investigate théects on stability of: (i) the see-saw tension along the pgesed
by distributed supportive aerostats, (ii) the point masss®ciated with the aerostats, and (iii)
the atomiser nozzle that forces a radial discharge of the éithe free end of the pipe.



Nomenclature
g Gravitational acceleration W Weight of the pipe
L Length of the pipe w(z t) Transverse displacement of the pipe
¢ Dimensionless length of the smallest pipe Vertical coordinate
element z, Vertical coordinate of the!" aerostat
M Mass of the fluid per unit length B Mass ratio
m Mass of the pipe per unit length Bn Mass ratio of the" aerostat
m, Mass of then” aerostat I'(¢) Dimensionless tension
N Number of aerostats I'o Dimensionless uniform tension compQg-
R Density ratio of the fluids inside and out- nent
side the aerostat onn Kronecker delta
T(2) Tension along the pipe & Discharge parametee (= 0, discharges
To Uniform tension component straight throughg = 1 discharges radially)
t Time n Dimensionless transverse displacement|of
U Flow velocity inside the pipe the pipe
0., Dimensionless numerical critical flowé Dimensionless coordinate
velocity pi Density of the gas inside the aerostat
u Dimensionless flow velocity po Density of air around the aerostat
U Dimensionless critical flow velocity 7 Dimensionless time
V, Volume of then™ aerostat w Complex dimensionless frequency

2. Methodology

We consider a pipe, a few centimetres in diameter and of tebganchored to the ground
and reaching 30 kilometres up to the stratosphere, as @djitFig. 1 (a). It is suspended from
N equally distributed identical aerostats — or balloons -aglits length.

Because the aspect ratio of the pipe is so large, its flexigidity El is very small as com-
pared to the tensiofi(x) along its length, i.e El/TL? <« 1. For this reason, we model the pipe
as a taut string of negligible flexural rigidity. Moreoverewonsider the longitudinal deforma-
tion of the pipe to be smalk, = T/AE <« 1, which insures that the longitudinal and transverse
dynamics are decoupled, as their frequencies are vastgreit (Anand, 1969). For a pipe of
radiusr with a thin shell construction, the relationship for thessd moment of areh= Ar?/2
allows rewriting the two previous inequalities as

r?)2l2 < ¢ < 1. (1)

Because of the very large aspect ratigr(), the two inequalities (1) can be respected and the
linear equation of the small transverse motig(z, t), adapted from Paidoussis (1998), may be
written as
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wherezis the vertical coordinaté/ the mass of the fluid per unit lengtl,the dimensional flow

velocity, mthe mass of the pipe per unit length arid the time. TheN supporting aerostats are
3

=0, )




/_w(z7t)
% z (c) fU
% J_\D/_’.
AN
O 1
0o To To+W/N r U

/v T(z)
(a) (b) (d)

Figure 1: (a) The flexible pipe conveying fluid supported Nbyaerostats equally distributed along its length, (b) the
tension distributionT (z) along the length of the pipe, whel&® = (M + m)gL, (c) the blocked top end of the pipe
discharging straight-through flowe (= 0) and (d) the top end equipped with atomisers dischargiedfltw radially
(e=1).

modelled as discrete mass®g using the Dirac delta functiofi(z - z,), wherez, = nL/N for
n=12.N.

The tension varies along the length of the pipe as depictemjinl(b). The weight of the pipe
is supported by the distributed aerostats, creating tléssag pattern in the tension. To insure
minimal stability, an additional constant tensidgis transmitted from the uppermost aerostat
to the anchorage on the ground. Moreover, in the case wherngile is fitted with a stabilising
end-piece that atomises the fluid in all radial directiondevblocking the straight-through flow-
path at the top of the pipe, the momentum of the fluid flow cieatéensiorMU? in the pipe
(Rinaldi and Paidoussis, 2010). The total tension in tpe [ thus

T(@ = To+ (M+ M)g[zmodL/N] + eMU?, (3)

whereg = 9.81 /s’ is the gravitational acceleration which is assumed consteer the length
of the pipe, gmodL/N] is the remainder of the division afby L/N, ande¢ is the discharge
parameter. From Newton’s law of universal gravitation, takie ofg should be diminished by
less than 1% at 30 km above the Earth’s surface. Neglectisgvéitiation makes the tension
equation slightly more straightforward and should not ieffilce greatly the dynamics.

If the upper tip of the pipe is fitted with atomisers that dexge the conveyed fluid in all
directions as in Fig. 1 (d} = 1; whereas if the pipe is simply discharging straight thioag in
Fig. 1 (c),e = 0.

The pipe is supported by aerostats equally distributed along its length. For lack bétter
design, we assume that allaerostats are spherical and produce the same lifting foupéfor
the N'" aerostat at the top which produces an additional fdgde accordance with Eq. (3). The
volume of then'" aerostat depends on its altitudg)(and is calculated to provide the buoyancy
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force equal to IN the weight of the pipe (plu$, for the top aerostat):
1 (m+M)L To

= +0 ,

N po-pi  "gloo—pi)
wherepq(z,) is the density of air around the aerosjatz,) is the density of the fluid within, and
onn is the Kronecker delta. Thefective mass of the aerostat at altituglés thus

Vy = (4)

1
My = Vpoi + EVn,Oo- 5)

The first term on the r.h.s. of Eq. (5) is the mass of the fluiddmshe aerostat, whereas the
second term is the added mass of air around the sphere tleé@tes with the aerostat. For
simplicity, we neglect the mass of the material the ball@made of. Substituting Eq. (4) into
Eq. (5), we can rewrite the mass of an aerostat as

m+ M)L To] +R
= %4' nNEO i—R’ (6)

whereR(2) = pi(2)/p0(2) is the density ratio of the fluids inside and outside the stato Assum-
ing that both fluids behave as ideal gases and that both tssyreeand the temperature are the
same inside and outside the aerod®as also the ratio of molar masses. This is convenient be-
cause theiR does not vary with altitude and so the mass of every aerogtstequal (except for
my). Because we neglect the weight of the material of the asisgghe variation of air density
with altitude has noféect on the dynamics of the pipe.

We define the following dimensionless parameters:

z \/7 B u
é: - L’ ’I ﬁ m+ M \/g_l_’

To T @

o= ———"—— T() = —(Z) Bn = _Th

(M+m)gL’ (M+m)gL’ (m+M)L’

to render Egs. (2), (3) and (6) dimensionless, as follows:
0 n %

2| -re) 2| 2+ S s -t <o @
['(£) =T+ [¢ mod IN] + s8u?, 9)
1 OnnD R+ % 10
ﬁn—( + 0nN 0)1_R- (10)

Egs. (8) and (9) are valid in the domain0¢ < 1, with boundary conditions|.—q = 0 and
(0n/9€)l¢=1 = 0

We adopt a finite-element formulation for this problem (Battn1987). We develop a two-
node elemeny(¢) = @i(¢) ;i based on linear shape functiobg¢) and nodal displacemenys
We then apply the Galerkin procedure by substitutj¥ into Eq. (8), multiplying by the shape
functions and integrating by parts over the lenf§tf an element. After some manipulation, we
obtain the formulation for an element modelling the linepmamics of a string conveying fluid:

st dlf)ee

1 1ffnal , T 1 -1 fna|l _[ ¢a
Tl el s w
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where{} = 4{}/or,T =Tg +A (e -1) + [% (&a + &) mod l/N], andg; represents the external
force applied at nodeof the element.

The domain is subdivided intlde elements giving rise to a singular systemNaf+ 1 second
order equations. With the boundary conditiofags= 0 and¢y, = O we obtain a system dfle
equationsM;;i; + Cijni + Kijn = 0. To account for the point masses of the aerostats, the value
of Bn is added to the mass matrix at the nodes located at the asroBtestudy the stability of
this system, we seek a solutign= #; exp iwt, where the real part of the complex frequercy
is the oscillation frequency and the imaginary part coroesis to the damping.

3. Results

The taut string model of the pipe conveying fluid predictsaisinstability when the tension
becomes null at least at one location along the length of ifpe. pin a taut string model, the
rigidity is provided by the tension; if the tension becomal, the pipe buckles. From Egs (8-9),
when the pipe is discharging straight through= 0), this occurs whepu? = T',. Thus the
critical flow velocity is given by

Uer = ‘/ﬁ = ‘,MgL’ or equivalently Ug = 4/ = (12)

Numerically though, the instability occurs when the tensidthe centre of at least one element
is zero, i.e., wheiBu? = T + £/2, where( is the dimensionless length of the element at the
location of minimal tension. Thus, the numerical criticalflvelocity is

~ Io+1¢/2
cr = . 13
U \f g (13)

We can see that the sizeof the elements must be small in order igf = uc. In all the
simulations performed here, we use a combination of elesreritvo diferent lengths: 10 short
elements{ = 4’y x 107%) just above the ground and each aerostat to ensurgithattic,| < 10
and 190 elements for the rest of the pipe length for a tot&l.of 200 elements.

To study the behaviour of the pipe numerically, we must ptewalues for the dierent
parameters. As in the white paper by Intellectual Ventu2€99), we consider a hose 2cm
in diameter made of a composite of mas4 iig/m?, carrying a mass flow rate ot Bkg/s of
liquefied SQ with a density of 1460 kgm®. Assuming a plug flow, we find a dimensional flow
velocity of U = 7m/s. From the densities, we find a mass ratiggof 0.95. The aerostats
considered are filled with helium surrounded by air, thusréti® of molar masses R = 0.138.
The dimensionless mass of th€ aerostat can thus be calculated from Eq. (10), varying ith
andl.

For a constant tension in the pipk,, we consider two scenarios. In the small tension sce-
nario, we impose a tension that ensures a safety factor oftBeparitical flow velocity in Eq.
(12), i.e. we impos&J., = 2x 7 m/s. This leads tai,, = 0.0258 and thu§, = 6.3 x 1074, In the
large tension scenario, we impose a tension everywherd egaaperior to 10% of the weight
of the pipe, thu$y = 0.1. With this tension, a pipe discharging straight througbustt become
unstable ati; = 0.324 according to Eq. (12). This corresponds to a dimensitwalelocity of
Ue = 176 nys, greatly exceeding the design requirement of/3.nWe are justified in studying
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Figure 2: Argand diagram for the first configuration with= 0.95,Tp = 0.00063,¢ = 0 andN = 1 massless aerostat
Bn = 0. The first three complex frequencies are showrtst mode;[J, 24 mode; andr, 39 mode. The corresponding
three mode shapes are showmiat 0 andu = 0.024.

the second scenario with a tension much greater than thess&y to avoid a static instability,
because other considerations such as external forcingewitid might impose more stringent
design criteria on the tensioning.

In order to isolate the influence of each parameter on therdigsof the pipe, we consider
the dfects of the tensioning scenario, the mass of the aerost&tsyumber of aerostats and
the discharging nozzle separately. In Figures 2-6, we dend configurations of a pipe sup-
ported by : (i) a single massless aerostat with small tengigra single massless aerostat with
a large tension; (iii) a single aerostat with physical mass large tension; (iv) two aerostats
with physical mass and large tension; and (v) two aerostilsplysical mass and large tension
but discharging radially in opposition to the first four cgufiations where the pipe discharges
straight through.

Considering a pipe supported by = 1 aerostat for the small tension scenalig € 6.3 x
107%), we obtain the Argand diagram shown in Figure 2 for the flist¢ modes. At zero flow,
the three frequencies are purely real and thus undampedheAfioiv velocity is increased up
to u = 0.024, the imaginary part of every frequency increases withauch dfect on the real
part. Increasing the flow rate further still, the real partwobf the first mode becomes zero at
O = 0.0258, whereupon it bifurcates; one branch eventually e$se origin, so we have
the real part equal to zero, while @) < 0, which is an indication of a loss of stability by
divergence (buckling). The higher modes become unstableé&oginally larger flow velocities
as the tension at the centre of more elements becomes zetbe ©urves of the Argand diagram,
the complex frequencies are labelled at regular flow vefdctervalsu = 0, 0.008 0.016 0.024
until instability is reached. No markers appear on the ceibegween = 0.024 andlg; = 0.0258.

In that flow velocity range, the real parts of the frequensieddenly go to zero.
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Figure 3: Argand diagram for the second configuration With 0.95,'p = 0.1,N = 1, & = 0 andB, = 0. The first three
complex frequencies are showsy; 15t mode;[J, 24 mode; andh, 34 mode. The corresponding three mode shapes are
shown atu = 0 andu = 0.3.

The Coriolis term, 2% on L.h.s. in Eq. (2), is proportional to the flow velocity asd@spon-
sible for the increase in damping, hence the t€uaomiolis damping(see Herrmann et al., 1966;
Paidoussis, 1998, p.122 and de Langre, 2002, p.97). Sieceritical velocity is small for low
tensionI'y, there is little Coriolis damping and the imaginary partsioé frequencies remain
small. The real parts of the frequencies are also litifecied up to flow velocities close to the
critical velocity. Also shown in Fig. 2 are the first three neoghapes at = 0 andu = 0.024.
The lack of influence of Coriolis damping is obvious in thesmlmshapes which remain sensibly
unaltered up to flow speeds close to the critical flow velocity

In the next four configurations, we consider the high tensicenario which insures stabil-
ity up to higher flow speeds and which gives rise to more istérg dynamics as the Coriolis
damping becomes more significant.

For the second configuration, considering large tensiolm @rie massless aerostat, we obtain
the Argand diagram shown in Fig. 3. As in the previous conéitian, the frequencies are purely
real at zero flow and their imaginary parts become positive@lis damping is generated by
the flow. The real part o of the first mode becomes zerowt = 0.325, whereupon it loses
stability by buckling.

Because of the higher tension and thus the higher flow védsaitonsidered, the Coriolis
damping has morefiect on the frequencies and the real parts of the frequenaesgnificantly
altered at flow velocities below the critical velocity. Thesfithree mode shapesat= 0 and
u = 0.3 are also shown in Fig. 3. With increasing flow speed, the-déesplacement nodes on the
2" and 39 modes disappear due to the presence of Coriolis dampingisThecause at non-zero
flow, the displacement patterns contain both stationanti@velling-wave components. We say
that the zero-displacement nodes are replaced by “quagsioWhat is also noticeable is that,
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Figure 4: Argand diagram for the third configuration witk 0.95,p = 0.1, N = 2, & = 0 andB,, = 0.81. The first three
complex frequencies are showsy: 15t mode;[J, 24 mode; andh, 34 mode. The corresponding three mode shapes are
shown atu = 0 andu = 0.3.

with higher flow speed, the deformation of the mode shapesoi® important at the bottom
where the tension is the lowest.

To show the &ect of the mass of the aerostat at the top of the pipe in the tleinfiguration,
we consider the same parameter val@es 0.95,Ip = 0.1 andN = 1 as previously, but with
a non-negligible aerostat mg8s = 0.81. The Argand diagram of the first three frequencies
is shown in Fig. 4. Theféect of adding mass to the system is to diminish both the redl an
imaginary parts of all three frequencies. The end-mass shyrsficantly lowers the fective
damping as would be expected when adding mass to a simplegpasg-dashpot system.

The mode shapes of the first three modes are shown in Fig.u4=a® andu = 0.3 with
the end-mass depicted as a circle. Comparing with Fig. 3etltemass tends to reduce the
movement of the tip of the pipe and prolongs the velocity eafag the occurrence of nodes.
Whereas the nodes in modes 2 and 3 in Fig. 3 clearly becoméigodss au = 0.3, the dfect
is less noticeable in Fig. 4. This is possibly due to the lod@nping of these modes.

Subsequently, we study thé&ect of supporting the hose with two aerostdts£ 2) in the
fourth configuration. The total mass of the aerostats is #imesas in the third configuration
but is here split into twop; = 0.37 andB, = 0.44, and the tension in the pipe has a see-saw
pattern. The Argand diagram is shown in Fig. 5, along withrifaele shapes. With the same
total mass, the first three real frequencies of the system drer lower than for a single larger
aerostat (Fig. 4), but the complex part is larger for all flgpeeds belows = 0.3. The see-saw
pattern in the tension function of Eq. (9) due to multiplepoiping aerostats significantlyfacts
the appearance of the mode shapes.

The addition of point masses to the system, whether one (#jgtwo (Fig. 5) or many
more (not shown), does not influence the occurrence of iitisgabrhe divergence (buckling)
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Figure 5: Argand diagram for the fourth configuration with- 0.95,Ig = 0.1, N = 2, & = 0 andBp = 0.37+ 0.075,n.
The first three complex frequencies are shownist mode;[], 2" mode; anda, 39 mode. The corresponding three
mode shapes are shownuat 0 andu = 0.3.

instability is a static loss-of-dfness instability and is not influenced by the addition of make
tension in the pipe becomes zerougt = 0.324, no matter how many point-masses are added.
However, the loci of the complex frequencies in the Argaradycams is significantlyféected.

Lastly, we study the féect of the atomiser at the end of the pipe in the fifth configonat
Instead of discharging straight through, the pipe now disgés radially. This has fofftect the
cancellation of the compressive force the fluid flow exertth@pipe (Egs. 8 and 9). The Argand
diagram for the system with= 1 is shown in Fig. 6. The diagram is dramaticallffeient from
that of Fig. 5. Notice that the markers in Fig. 6 indicate flugdocities much higher than in the
previous figures (Figs. 2-5). The pipe discharging radidt¢s not have a critical velocity. It
does not buckle. However, its modes tend towards null coxfpdejuencies at large flow speeds.
The first three mode shapeswat 1.0 are shown on top of Fig. 6. They are not shown at 0
as they are identical to those of Fig. 5.

The addition of a radial atomiser to discharge the flow régiaimoves the instability. Atom-
isers are thus desirable in the design of g &0se to the sky. However, even if instability is no
longer of concern, the dynamic stability analysis of thelyem can still bring valuable infor-
mation for the design of a hose to the sky. For example, thgimaay part of the frequency (or
the damping rate) of the first five modes are shown in Fig. 7ugetise number of aerostats at
u=0.1in(a) and au = 1.0 in (b). What can generally be observed is that the dampirgg in
given mode increases rapidly with the number of aerostatsien the latter becomes larger than
the number of the mode in question. Also, whereas at low flavedp (Fig. %=(a)) the damping
of the first five modes increases monotonically foe- 5, at higher flow speeds (Fig. 7(b)) the
damping decreases with for large values oN.

10



0.25 T T T T T

1
ool [\ T .
1
0.15¢ \ 1
3
Z 01 ! .
10
0.05 0.1 -
100 0.1 0.1
0 o 0 ) 0 _O
1°* Mode, ond Mode . 3rd Mode .
0 1 2 3 4 5 6

Re (w)

Figure 6: Argand diagram for the fifth configuration, the pifigcharging radially witl8 = 0.95,Tp =0.1,N=2,e =1
andgn = 0.37 + 0.075,n. The first three complex frequencies are showni®t mode;, 2'd mode; anda, 34 mode.
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Figure 7: Damping of the vibration modes of the pipe discimrgadially ¢ = 1) with g = 0.95,T = 0.1 andN = 2

aerostats of mags, = 0.37+ 0.075,\ at flow velocities (au = 0.1; and (b)u = 1.0. The imaginary part of the first fives
modes is shown: mode &) mode 2 [J); mode 3 4); mode 4 ()); mode 5 7).

11



4. Conclusion

The design, construction, deployment and operation of @ pomping sulphur dioxide to the
stratosphere represent tremendous engineering chadleflgese come in addition to the simula-
tion and measurement work that must be done to predict ardstse ffect of geoengineering
on Earth’s climate. Here we covered only a very small parhaf thallenge, by evaluating the
dynamic stability of a hose to the sky considering distelolsupportive aerostats and the atom-
iser nozzle that forces a radial discharge of the fluid atithe €énd of the pipe. We modelled the
pipe as a taut string conveying fluid using the finite elemegihod.

With a nozzle that discharges the flow straight through, waéothat the pipe loses stability
by buckling when the tension becomes null at least at onditwtalong its length. This insta-
bility can be avoided by having a ficient minimum tensiorT, throughout the whole length
of the pipe. The distribution of aerostats does not influghieinstability but it modifies the
mode shapes andfacts the complex frequencies. However, if the atomisethdiges the flow
radially at the tip of the pipe, the resulting dynamics isicatly altered: the instability is totally
eliminated. Thus the use of such atomisers is strongly revemded. Moreover, we showed
that the Coriolis damping can be significant and that by gmpately selecting the number of
aerostats as well as the dimensionless flow velocity it camteased. With this in mind, a
functional hose to the sky could be designed to maximisedisrdamping and thus passively
damp the motion of the pipe. This work may be said to have sevgive support to the notion
that “the hose to the sky” is a technically feasible way totomirthe Earth’s climate.

The present study is concerned with ttieet of internal flow on the dynamic stability of the
hose system, but external air flow on the aerostats showdal®f significant design concern.
The large static wind forces, Heting and vortex-induced vibrations (Paidoussis et &1,02
will have important &ects on the motion of the aerostats and thus in the strespesiexced
by the tethethose. These phenomena warrant further study, consideoihgtbe internal and
external flows to account for both the excitation on the pipd the damping due to internal
flow. This could be done by combining the approaches of Gdardind Williamson (1997),
Coulombe-Pontbriand and Nahon (2009) and that of the pretsaty.
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