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Abstract

The Stratospheric Shield was proposed as a geoengineering concept to control the Earth’s cli-
mate and reverse global warming. This approach seeks to release sulphur dioxide (SO2) aerosols
in the stratosphere to decrease the amount of sunlight that reaches the surface of the Earth. It was
proposed that this be done by pumping liquefied SO2 from the ground to the stratosphere in a 30
kilometre long hose supported by aerostats.

In this paper we evaluate the dynamic stability of a hose to the sky considering distributed
supportive aerostats and an atomiser nozzle that forces a radial discharge of the fluid at the free
end of the pipe. We modelled the pipe as a taut string conveying fluid using the finite element
method.

With a nozzle that discharges the flow straight through, we found that the pipe loses stability
by buckling when the tension becomes null at least at one location along its length. This insta-
bility can be avoided by having a sufficient minimum tensionT0 throughout the whole length of
the pipe. The distribution of aerostats does not influence this instability but it modifies the mode
shapes and affects the complex frequencies. The atomiser discharging theflow radially at the tip
of the pipe has for effect to remove the possibility of an instability; its use is thus recommended.
Moreover, we showed that the Coriolis damping can be significant and that by appropriately
selecting the number of aerostats as well as the dimensionless flow velocity, stability can be in-
creased. With this in mind, a functional hose to the sky couldbe designed to maximise Coriolis
damping and thus passively damp the motion of the pipe due to forcing from the wind.
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1. Introduction

The dynamics of pipes conveying fluid has been the object of research since at least the
late 1930s. Initially, the topic attracted researchers’ interest because it displayed interesting
dynamical behaviour by means of simple mathematical models, amenable to simple analytical or
quasi-analytical solutions and to validations via relatively simple experiments Paı̈doussis (1993,
1998, 2008).

Most of the seminal research on the fundamentals, conductedin the 1950s and 60s, was
curiosity-driven. Applications, making use of the fruits of that research emerged 30, 40 and 50
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years later, and they continue popping up at an acceleratingpace: on ocean mining, drilling for
oil and gas, carbon sequestration in the ocean, micro/nano applications (Paı̈doussis, 2010), and
most recently on the “Stratospheric Shield” (IntellectualVentures, 2009) which is the subject of
the present study.

The stratospheric shield which has been the subject of a lot of attention in the popular press
(Bradbury, 2008; Levitt and Dubner, 2009) is a geoengineering concept to control the Earth’s
climate and reverse global warming. This approach seeks to increase the amount of sulphur
dioxide (SO2) aerosols in the stratosphere, so as to decrease the amount of sunlight that reaches
the surface of the Earth. It amounts to reproducing the effect of a large volcanic eruption such as
that of Mount Pinatubo in the Philippines in 1991. The cooling effect of limiting solar radiation
is immediate and not long-lasting, as sulphur dioxide aerosols remain in the stratosphere for only
a few years (Robock, 2002). By artificially pumping aerosolsin the stratosphere, the blocked
sunlight could partially offset the climate warming due to greenhouse gases.

On the downside, geoengineering through the release of SO2 aerosols could have some se-
rious adverse effects on the the hydrological cycle of the Earth. Potentially, it could lead to
widespread drought and reduced freshwater resources (Trenberth and Dai, 2007). Moreover, the
concept of humans purposely modifying the climate raises important ethical issues (Crutzen,
2006; Shepherd, 2009). The consequences and implications of geoengineering are not com-
pletely understood and require additional research beforeany implementation should be at-
tempted (Shepherd, 2009). On the other hand, better informed decision will result from further
analyses to assess the feasibility of the technology. This is what we pursue here.

Where the fluid-conveying pipe comes into play in the stratospheric shield is that it was sug-
gested as the simplest and most cost-effective way to deliver tons of SO2 aerosols in the strato-
sphere (Intellectual Ventures, 2009; Davidson et al., 2012). It is proposed to use a 30 kilometre
long hose only a few centimetres in diameter, held up vertically by aerostats (or balloons) to carry
100,000 metric tons of SO2 up to the stratosphere every year. It is the goal of the present paper
to investigate theoretically the dynamic stability of sucha slender hose and to see if it would be
subject to garden-hose instability (Paı̈doussis, 1998).

This problem is related to that of tethered aerostat stability.Williamson and Govardhan (1997)
and Govardhan and Williamson (1997) showed that a tethered sphere could oscillate significantly
when subjected to steady flow due to vortex-induced vibrations. Lambert and Nahon (2003)
studied numerically through a lumped-mass approach the nonlinear dynamics of a streamlined
aerostat tethered to the ground by one single tether. The aerodynamic forces on this stream-
lined aerostat were modelled with empirical lift, drag and moment coefficients and with no
vortex-shedding forcing considered. The stability analysis showed the system to be stable at
all wind speeds. Coulombe-Pontbriand and Nahon (2009) usedthe approach of Lambert and
Nahon (2003) to model a spherical aerostat and added a sinusoidal forcing to account for vortex-
shedding excitation. In essence, the design of an aerostat will influence its aerodynamic and
inertial properties and if its shape is blunt, vortex-induced vibrations can occur. Because the
effect of wind is so dependent on the exact geometry of the aerostat, we leave these effects for
later studies.

In the current study, we focus our attention on the effect of the internal flow on the hose
system. We investigate the effects on stability of: (i) the see-saw tension along the pipe caused
by distributed supportive aerostats, (ii) the point massesassociated with the aerostats, and (iii)
the atomiser nozzle that forces a radial discharge of the fluid at the free end of the pipe.
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Nomenclature

g Gravitational acceleration
L Length of the pipe
ℓ Dimensionless length of the smallest pipe
element

M Mass of the fluid per unit length
m Mass of the pipe per unit length
mn Mass of thenth aerostat
N Number of aerostats
R Density ratio of the fluids inside and out-
side the aerostat

T(z) Tension along the pipe
T0 Uniform tension component
t Time
U Flow velocity inside the pipe
ũcr Dimensionless numerical critical flow
velocity

u Dimensionless flow velocity
ucr Dimensionless critical flow velocity
Vn Volume of thenth aerostat

W Weight of the pipe
w(z, t) Transverse displacement of the pipe
z Vertical coordinate
zn Vertical coordinate of thenth aerostat
β Mass ratio
βn Mass ratio of thenth aerostat
Γ(ξ) Dimensionless tension
Γ0 Dimensionless uniform tension compo-
nent
δnN Kronecker delta
ε Discharge parameter (ε = 0, discharges
straight through;ε = 1 discharges radially)
η Dimensionless transverse displacement of
the pipe
ξ Dimensionless coordinate
ρi Density of the gas inside the aerostat
ρo Density of air around the aerostat
τ Dimensionless time
ω Complex dimensionless frequency

2. Methodology

We consider a pipe, a few centimetres in diameter and of length L, anchored to the ground
and reaching 30 kilometres up to the stratosphere, as depicted in Fig. 1 (a). It is suspended from
N equally distributed identical aerostats – or balloons – along its length.

Because the aspect ratio of the pipe is so large, its flexural rigidity EI is very small as com-
pared to the tensionT(x) along its length, i.e.,EI/T L2 ≪ 1. For this reason, we model the pipe
as a taut string of negligible flexural rigidity. Moreover, we consider the longitudinal deforma-
tion of the pipe to be small,ǫz = T/AE≪ 1, which insures that the longitudinal and transverse
dynamics are decoupled, as their frequencies are vastly different (Anand, 1969). For a pipe of
radiusr with a thin shell construction, the relationship for the second moment of areaI = Ar2/2
allows rewriting the two previous inequalities as

r2/2L2 ≪ ǫz≪ 1. (1)

Because of the very large aspect ratio (L/r), the two inequalities (1) can be respected and the
linear equation of the small transverse motionw(z, t), adapted from Paı̈doussis (1998), may be
written as

∂

∂z

[

(

MU2 − T(z)
) ∂w
∂z

]

+ 2MU
∂2w
∂z∂t

+ (M +m)
∂2w
∂t2
+ δ (z− zn)

mn

L
∂2w
∂t2
= 0, (2)

wherez is the vertical coordinate,M the mass of the fluid per unit length,U the dimensional flow
velocity,m the mass of the pipe per unit length andt is the time. TheN supporting aerostats are
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Figure 1: (a) The flexible pipe conveying fluid supported byN aerostats equally distributed along its length, (b) the
tension distributionT(z) along the length of the pipe, whereW = (M + m)gL, (c) the blocked top end of the pipe
discharging straight-through flow (ε = 0) and (d) the top end equipped with atomisers discharging the flow radially
(ε = 1).

modelled as discrete massesmn using the Dirac delta functionδ (z− zn), wherezn = nL/N for
n = 1, 2..N.

The tension varies along the length of the pipe as depicted inFig. 1(b). The weight of the pipe
is supported by the distributed aerostats, creating this see-saw pattern in the tension. To insure
minimal stability, an additional constant tensionT0 is transmitted from the uppermost aerostat
to the anchorage on the ground. Moreover, in the case where the pipe is fitted with a stabilising
end-piece that atomises the fluid in all radial directions while blocking the straight-through flow-
path at the top of the pipe, the momentum of the fluid flow creates a tensionMU2 in the pipe
(Rinaldi and Paı̈doussis, 2010). The total tension in the pipe is thus

T(z) = T0 + (m+ M) g [z modL/N] + εMU2, (3)

whereg = 9.81 m/s2 is the gravitational acceleration which is assumed constant over the length
of the pipe, [z modL/N] is the remainder of the division ofz by L/N, andε is the discharge
parameter. From Newton’s law of universal gravitation, thevalue ofg should be diminished by
less than 1% at 30 km above the Earth’s surface. Neglecting this variation makes the tension
equation slightly more straightforward and should not influence greatly the dynamics.

If the upper tip of the pipe is fitted with atomisers that discharge the conveyed fluid in all
directions as in Fig. 1 (d),ε = 1; whereas if the pipe is simply discharging straight through as in
Fig. 1 (c),ε = 0.

The pipe is supported byN aerostats equally distributed along its length. For lack ofa better
design, we assume that allN aerostats are spherical and produce the same lifting force except for
theNth aerostat at the top which produces an additional forceT0 in accordance with Eq. (3). The
volume of thenth aerostat depends on its altitude (zn) and is calculated to provide the buoyancy
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force equal to 1/N the weight of the pipe (plusT0 for the top aerostat):

Vn =
1
N

(m+ M) L
ρo − ρi

+ δnN
T0

g (ρo − ρi)
, (4)

whereρo(zn) is the density of air around the aerostat,ρi(zn) is the density of the fluid within, and
δnN is the Kronecker delta. The effective mass of the aerostat at altitudezn is thus

mn = Vnρi +
1
2

Vnρo. (5)

The first term on the r.h.s. of Eq. (5) is the mass of the fluid inside the aerostat, whereas the
second term is the added mass of air around the sphere that accelerates with the aerostat. For
simplicity, we neglect the mass of the material the balloon is made of. Substituting Eq. (4) into
Eq. (5), we can rewrite the mass of an aerostat as

mn =

[

(m+ M) L
N

+ δnN
T0

g

] 1
2 + R

1− R
, (6)

whereR(z) = ρi(z)/ρo(z) is the density ratio of the fluids inside and outside the aerostat. Assum-
ing that both fluids behave as ideal gases and that both the pressure and the temperature are the
same inside and outside the aerostat,R is also the ratio of molar masses. This is convenient be-
cause thenRdoes not vary with altitude and so the mass of every aerostatmn is equal (except for
mN). Because we neglect the weight of the material of the aerostats, the variation of air density
with altitude has no effect on the dynamics of the pipe.

We define the following dimensionless parameters:

ξ =
z
L
, η =

w
L
, τ = t

√

g
L
, β =

M
m+ M

, u =
U
√

gL
,

Γ0 =
T0

(M +m) gL
, Γ(ξ) =

T(z)
(M +m) gL

, βn =
mn

(m+ M) L
,

(7)

to render Eqs. (2), (3) and (6) dimensionless, as follows:

∂

∂ξ

[

(

βu2 − Γ(ξ)
) ∂η

∂ξ

]

+ 2βu
∂2η

∂ξ∂τ
+
∂2η

∂τ2
+ δ (ξ − ξn) βn

∂2η

∂τ2
= 0, (8)

Γ (ξ) = Γ0 +
[

ξ mod 1/N
]

+ εβu2, (9)

βn =

(

1
N
+ δnNΓ0

)

R+ 1
2

1− R
. (10)

Eqs. (8) and (9) are valid in the domain 0< ξ < 1, with boundary conditionsη|ξ=0 = 0 and
(∂η/∂ξ)|ξ=1 = 0.

We adopt a finite-element formulation for this problem (Burnett, 1987). We develop a two-
node element ˜η(ξ) = Φi(ξ) ηi based on linear shape functionsΦi(ξ) and nodal displacementsηi .
We then apply the Galerkin procedure by substituting ˜η(ξ) into Eq. (8), multiplying by the shape
functions and integrating by parts over the lengthℓ of an element. After some manipulation, we
obtain the formulation for an element modelling the linear dynamics of a string conveying fluid:

ℓ

3

[

1 1
2

1
2 1

] {

η̈a

η̈b

}

+ βu

[

−1 1
−1 1

] {

η̇a

η̇b

}

+
Γ̄

ℓ

[

1 −1
−1 1

] {

ηa

ηb

}

=

{

φa

−φb

}

, (11)
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where{̇ } = ∂ { }/∂τ, Γ̄ = Γ0 + βu2 (ε − 1) +
[

1
2 (ξa + ξb) mod 1/N

]

, andφi represents the external
force applied at nodei of the element.

The domain is subdivided intoNe elements giving rise to a singular system ofNe+ 1 second
order equations. With the boundary conditionsη0 = 0 andφNe = 0 we obtain a system ofNe

equations:Mi j η̈i + Ci j η̇i +Ki jηi = 0. To account for the point masses of the aerostats, the value
of βn is added to the mass matrix at the nodes located at the aerostats. To study the stability of
this system, we seek a solutionηi = η̂i exp iωτ, where the real part of the complex frequencyω
is the oscillation frequency and the imaginary part corresponds to the damping.

3. Results

The taut string model of the pipe conveying fluid predicts a static instability when the tension
becomes null at least at one location along the length of the pipe. In a taut string model, the
rigidity is provided by the tension; if the tension becomes null, the pipe buckles. From Eqs (8-9),
when the pipe is discharging straight through (ε = 0), this occurs whenβu2 = Γ0. Thus the
critical flow velocity is given by

ucr =

√

Γ0

β
=

√

T0

MgL
, or equivalently Ucr =

√

T0

L
. (12)

Numerically though, the instability occurs when the tension at the centre of at least one element
is zero, i.e., whenβu2 = Γ0 + ℓ/2, whereℓ is the dimensionless length of the element at the
location of minimal tension. Thus, the numerical critical flow velocity is

ũcr =

√

Γ0 + ℓ/2
β

. (13)

We can see that the sizeℓ of the elements must be small in order for ˜ucr → ucr. In all the
simulations performed here, we use a combination of elements of two different lengths: 10 short
elements (ℓ = 4Γ0×10−4) just above the ground and each aerostat to ensure that|ucr − ũcr| < 10−4

and 190 elements for the rest of the pipe length for a total ofNe = 200 elements.
To study the behaviour of the pipe numerically, we must provide values for the different

parameters. As in the white paper by Intellectual Ventures (2009), we consider a hose 2 cm
in diameter made of a composite of mass 0.4 kg/m2, carrying a mass flow rate of 3.2 kg/s of
liquefied SO2 with a density of 1460 kg/m3. Assuming a plug flow, we find a dimensional flow
velocity of U = 7 m/s. From the densities, we find a mass ratio ofβ = 0.95. The aerostats
considered are filled with helium surrounded by air, thus theratio of molar masses isR= 0.138.
The dimensionless mass of thenth aerostat can thus be calculated from Eq. (10), varying withN
andΓ0.

For a constant tension in the pipe,T0, we consider two scenarios. In the small tension sce-
nario, we impose a tension that ensures a safety factor of 2 onthe critical flow velocity in Eq.
(12), i.e. we imposeUcr = 2× 7 m/s. This leads toucr = 0.0258 and thusΓ0 = 6.3× 10−4. In the
large tension scenario, we impose a tension everywhere equal or superior to 10% of the weight
of the pipe, thusΓ0 = 0.1. With this tension, a pipe discharging straight through should become
unstable atucr = 0.324 according to Eq. (12). This corresponds to a dimensionalflow velocity of
Ucr = 176 m/s, greatly exceeding the design requirement of 7 m/s. We are justified in studying
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Figure 2: Argand diagram for the first configuration withβ = 0.95, Γ0 = 0.00063,ε = 0 andN = 1 massless aerostat
βn = 0. The first three complex frequencies are shown:◦, 1st mode;�, 2nd mode; and△, 3rd mode. The corresponding
three mode shapes are shown atu = 0 andu = 0.024.

the second scenario with a tension much greater than that necessary to avoid a static instability,
because other considerations such as external forcing by the wind might impose more stringent
design criteria on the tensioning.

In order to isolate the influence of each parameter on the dynamics of the pipe, we consider
the effects of the tensioning scenario, the mass of the aerostats, the number of aerostats and
the discharging nozzle separately. In Figures 2-6, we consider 5 configurations of a pipe sup-
ported by : (i) a single massless aerostat with small tension; (ii) a single massless aerostat with
a large tension; (iii) a single aerostat with physical mass and large tension; (iv) two aerostats
with physical mass and large tension; and (v) two aerostats with physical mass and large tension
but discharging radially in opposition to the first four configurations where the pipe discharges
straight through.

Considering a pipe supported byN = 1 aerostat for the small tension scenario (Γ0 = 6.3 ×
10−4), we obtain the Argand diagram shown in Figure 2 for the first three modes. At zero flow,
the three frequencies are purely real and thus undamped. As the flow velocity is increased up
to u = 0.024, the imaginary part of every frequency increases without much effect on the real
part. Increasing the flow rate further still, the real part ofω of the first mode becomes zero at
ũcr = 0.0258, whereupon it bifurcates; one branch eventually crosses the origin, so we have
the real part equal to zero, while Im(ω) < 0, which is an indication of a loss of stability by
divergence (buckling). The higher modes become unstable for marginally larger flow velocities
as the tension at the centre of more elements becomes zero. Onthe curves of the Argand diagram,
the complex frequencies are labelled at regular flow velocity intervalsu = 0, 0.008, 0.016, 0.024
until instability is reached. No markers appear on the curves betweenu = 0.024 and ˜ucr = 0.0258.
In that flow velocity range, the real parts of the frequenciessuddenly go to zero.
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Figure 3: Argand diagram for the second configuration withβ = 0.95,Γ0 = 0.1,N = 1, ε = 0 andβn = 0. The first three
complex frequencies are shown:◦, 1st mode;�, 2nd mode; and△, 3rd mode. The corresponding three mode shapes are
shown atu = 0 andu = 0.3.

The Coriolis term, 2nd on l.h.s. in Eq. (2), is proportional to the flow velocity and is respon-
sible for the increase in damping, hence the termCoriolis damping(see Herrmann et al., 1966;
Paı̈doussis, 1998, p.122 and de Langre, 2002, p.97). Since the critical velocity is small for low
tensionΓ0, there is little Coriolis damping and the imaginary parts ofthe frequencies remain
small. The real parts of the frequencies are also little affected up to flow velocities close to the
critical velocity. Also shown in Fig. 2 are the first three mode shapes atu = 0 andu = 0.024.
The lack of influence of Coriolis damping is obvious in these mode shapes which remain sensibly
unaltered up to flow speeds close to the critical flow velocity.

In the next four configurations, we consider the high tensionscenario which insures stabil-
ity up to higher flow speeds and which gives rise to more interesting dynamics as the Coriolis
damping becomes more significant.

For the second configuration, considering large tension with one massless aerostat, we obtain
the Argand diagram shown in Fig. 3. As in the previous configuration, the frequencies are purely
real at zero flow and their imaginary parts become positive asCoriolis damping is generated by
the flow. The real part ofω of the first mode becomes zero at ˜ucr = 0.325, whereupon it loses
stability by buckling.

Because of the higher tension and thus the higher flow velocities considered, the Coriolis
damping has more effect on the frequencies and the real parts of the frequencies are significantly
altered at flow velocities below the critical velocity. The first three mode shapes atu = 0 and
u = 0.3 are also shown in Fig. 3. With increasing flow speed, the zero-displacement nodes on the
2nd and 3rd modes disappear due to the presence of Coriolis damping. That is because at non-zero
flow, the displacement patterns contain both stationary andtravelling-wave components. We say
that the zero-displacement nodes are replaced by “quasi-nodes”. What is also noticeable is that,
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Figure 4: Argand diagram for the third configuration withβ = 0.95,Γ0 = 0.1, N = 2, ε = 0 andβn = 0.81. The first three
complex frequencies are shown:◦, 1st mode;�, 2nd mode; and△, 3rd mode. The corresponding three mode shapes are
shown atu = 0 andu = 0.3.

with higher flow speed, the deformation of the mode shapes is more important at the bottom
where the tension is the lowest.

To show the effect of the mass of the aerostat at the top of the pipe in the third configuration,
we consider the same parameter valuesβ = 0.95,Γ0 = 0.1 andN = 1 as previously, but with
a non-negligible aerostat massβn = 0.81. The Argand diagram of the first three frequencies
is shown in Fig. 4. The effect of adding mass to the system is to diminish both the real and
imaginary parts of all three frequencies. The end-mass thussignificantly lowers the effective
damping as would be expected when adding mass to a simple mass-spring-dashpot system.

The mode shapes of the first three modes are shown in Fig. 4 atu = 0 andu = 0.3 with
the end-mass depicted as a circle. Comparing with Fig. 3, theend-mass tends to reduce the
movement of the tip of the pipe and prolongs the velocity range for the occurrence of nodes.
Whereas the nodes in modes 2 and 3 in Fig. 3 clearly become quasi-nodes atu = 0.3, the effect
is less noticeable in Fig. 4. This is possibly due to the lowerdamping of these modes.

Subsequently, we study the effect of supporting the hose with two aerostats (N = 2) in the
fourth configuration. The total mass of the aerostats is the same as in the third configuration
but is here split into two,β1 = 0.37 andβ2 = 0.44, and the tension in the pipe has a see-saw
pattern. The Argand diagram is shown in Fig. 5, along with themode shapes. With the same
total mass, the first three real frequencies of the system here are lower than for a single larger
aerostat (Fig. 4), but the complex part is larger for all flow speeds belowu = 0.3. The see-saw
pattern in the tension function of Eq. (9) due to multiple supporting aerostats significantly affects
the appearance of the mode shapes.

The addition of point masses to the system, whether one (Fig.4), two (Fig. 5) or many
more (not shown), does not influence the occurrence of instability. The divergence (buckling)
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Figure 5: Argand diagram for the fourth configuration withβ = 0.95,Γ0 = 0.1, N = 2, ε = 0 andβn = 0.37+ 0.07δnN.
The first three complex frequencies are shown:◦, 1st mode;�, 2nd mode; and△, 3rd mode. The corresponding three
mode shapes are shown atu = 0 andu = 0.3.

instability is a static loss-of-stiffness instability and is not influenced by the addition of mass. The
tension in the pipe becomes zero atucr = 0.324, no matter how many point-masses are added.
However, the loci of the complex frequencies in the Argand diagrams is significantly affected.

Lastly, we study the effect of the atomiser at the end of the pipe in the fifth configuration.
Instead of discharging straight through, the pipe now discharges radially. This has for effect the
cancellation of the compressive force the fluid flow exerts onthe pipe (Eqs. 8 and 9). The Argand
diagram for the system withε = 1 is shown in Fig. 6. The diagram is dramatically different from
that of Fig. 5. Notice that the markers in Fig. 6 indicate fluidvelocities much higher than in the
previous figures (Figs. 2-5). The pipe discharging radiallydoes not have a critical velocity. It
does not buckle. However, its modes tend towards null complex frequencies at large flow speeds.
The first three mode shapes atu = 1.0 are shown on top of Fig. 6. They are not shown atu = 0
as they are identical to those of Fig. 5.

The addition of a radial atomiser to discharge the flow radially removes the instability. Atom-
isers are thus desirable in the design of a SO2 hose to the sky. However, even if instability is no
longer of concern, the dynamic stability analysis of the problem can still bring valuable infor-
mation for the design of a hose to the sky. For example, the imaginary part of the frequency (or
the damping rate) of the first five modes are shown in Fig. 7 versus the number of aerostats at
u = 0.1 in (a) and atu = 1.0 in (b). What can generally be observed is that the damping ina
given mode increases rapidly with the number of aerostatsN when the latter becomes larger than
the number of the mode in question. Also, whereas at low flow speeds (Fig. 7=(a)) the damping
of the first five modes increases monotonically forN ≥ 5, at higher flow speeds (Fig. 7(b)) the
damping decreases withN for large values ofN.
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4. Conclusion

The design, construction, deployment and operation of a hose pumping sulphur dioxide to the
stratosphere represent tremendous engineering challenges. These come in addition to the simula-
tion and measurement work that must be done to predict and assess the effect of geoengineering
on Earth’s climate. Here we covered only a very small part of this challenge, by evaluating the
dynamic stability of a hose to the sky considering distributed supportive aerostats and the atom-
iser nozzle that forces a radial discharge of the fluid at the free end of the pipe. We modelled the
pipe as a taut string conveying fluid using the finite element method.

With a nozzle that discharges the flow straight through, we found that the pipe loses stability
by buckling when the tension becomes null at least at one location along its length. This insta-
bility can be avoided by having a sufficient minimum tensionT0 throughout the whole length
of the pipe. The distribution of aerostats does not influencethis instability but it modifies the
mode shapes and affects the complex frequencies. However, if the atomiser discharges the flow
radially at the tip of the pipe, the resulting dynamics is radically altered: the instability is totally
eliminated. Thus the use of such atomisers is strongly recommended. Moreover, we showed
that the Coriolis damping can be significant and that by appropriately selecting the number of
aerostats as well as the dimensionless flow velocity it can beincreased. With this in mind, a
functional hose to the sky could be designed to maximise Coriolis damping and thus passively
damp the motion of the pipe. This work may be said to have served to give support to the notion
that “the hose to the sky” is a technically feasible way to control the Earth’s climate.

The present study is concerned with the effect of internal flow on the dynamic stability of the
hose system, but external air flow on the aerostats should also be of significant design concern.
The large static wind forces, buffeting and vortex-induced vibrations (Paı̈doussis et al., 2010)
will have important effects on the motion of the aerostats and thus in the stresses experienced
by the tether/hose. These phenomena warrant further study, considering both the internal and
external flows to account for both the excitation on the pipe and the damping due to internal
flow. This could be done by combining the approaches of Govardhan and Williamson (1997),
Coulombe-Pontbriand and Nahon (2009) and that of the present study.
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