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Abstract

Shot peen forming is a cold work process used to shape thin metallic com-
ponents by bombarding them with small shots at high velocities. Several
simulation procedures have been reported in the literature for this process,
but their predictive capabilities remain limited as they systematically re-
quire some form of calibration or empirical adjustments. We intend to show
how procedures based on the concept of eigenstrains, which were initially
developed for applications in other fields of residual stress engineering, can
be adapted to peen forming and stress-peen forming. These tools prove to
be able to reproduce experimental results when the plastic strain field that
develop inside a part is known with sufficient accuracy. They are, however,
not mature enough to address the forming of panels that are free to deform
during peening. For validation purposes, we peen formed several 1 by 1 me-
ter 2024-T3 aluminum alloy panels. These experiments revealed a transition
from spherical to cylindrical shapes as the panel thickness is decreased for a
given treatment, that we show results from an elastic instability.
Keywords: Peen forming, eigenstrains, 2024 aluminum alloy, elastic
instability

1. Introduction

Peen forming is a cold work process predominantly used by aircraft man-
ufacturers to shape wing skins (Baughman, 1970). The process consists of
bombarding thin metallic parts with small shots in order to plastically de-
form a thin surface layer of material. As a result of strain incompatibility be-
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Figure 1: (a) Peen forming of a wing panel. In-plane expansion of the plastically deformed
layer causes the part to bend and elongate. (b) Typical (normalized) in plane residual
stress and plastic strain profiles after uniform peening. The linear portion in the residual
stress profile is due to bending.

tween the surface and the core—left unaffected by the treatment—the whole
structure distorts and compressive residual stresses develop near the surface.
Figure 1 shows schematically the process application on a wing skin, as well
as typical peening-induced plastic strain and residual stress fields. Although
the range of accessible curvatures is limited, it is possible to peen form a wide
variety of shapes once appropriate parameters are set. Larger curvatures can
be achieved by elastically prestraining the parts before peening to increase
the effect of the treatment in a given direction (Ramati et al., 1999). This
variant of the process is called stress-peen forming.

Simulating the whole process explicitly (i.e., simulating every shot hit-
ting the target) is currently beyond reach. For that reason, most available
publications on the topic relied on a two-step local-global approach. The
local step aims at characterizing the effect of a given treatment on a given
material, usually in terms of residual stresses and plastic strains. It is per-
formed either experimentally (Levers and Prior, 1998) or numerically as in
the work of Chaise (2011) on ultrasonic shot peening. Mylonas and Labeas
(2011) provide an overview of recent research on local peening simulations
in a non peen forming-specific context. Stresses or strains induced by the
peening treatment are then post-processed to extract loads that are input in
structural models of parts to compute equilibrium configurations. The local
step involves contact, plasticity, and large deformations that are character-
istics of a forming analysis. The global step, on the other hand, can be seen
as a springback analysis, as it was demonstrated by Chen et al. (2014) that
the re-balancing of the part usually involves only elastic transformations.
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Several types of (idealized) loads used in global simulations were reported
in the literature: Levers and Prior (1998) and Wang et al. (2006) reproduced
the expansion of subsurface layers where Gariépy et al. (2011) used peening-
induced non-equilibrated residual stress profiles. The main shortcoming of
these approaches is that, although the choice of the loading is guided by some
a priori knowledge of the post-peening state, several parameters systemati-
cally have to be adjusted by comparing simulated deformed shapes with their
experimental counterparts. The workload is significant and simulations are
limited to the vicinity of the process parameters for which the calibration
has been performed.

We aimed to show that readily available procedures based on the concept
of eigenstrain, which are commonly used in other fields of residual stress en-
gineering, can be adapted to simulate peen forming. These tools have the
potential to bypass the calibration step and to simulate peening conditions
out of reach of existing procedures. To illustrate this point, we investigate
the nature of a transition between spherical and cylindrical deformations
observed on panels of varying thickness peen formed under identical condi-
tions. The reason behind this transition has not been explained in peening
literature yet, to the best of our knowledge.

The paper is structured as follows: section 2 reviews key results and simu-
lation strategies from eigenstrain literature, as well as previous peen forming
experimental campaigns. Materials and methods are detailed in section 3.
The proposed simulation procedure is presented in section 4. The latter is
validated against experimental results from the literature in section 5.1, and
against results generated in the course of this study in section 5.2. Both
conventional and stress peen forming are considered. The main findings are
discussed in section 6.

2. Background

2.1. Eigenstrains
The term eigenstrain, coined by Mura (1987), has been used to desig-

nate anelastic deformations inside a structure regardless of the physical phe-
nomenon they originate from. Stress-free strains and inherent strains are
equivalent designations sometimes encountered in the literature. The con-
cept of stress-sources (initial unbalanced residual stresses) used by Niku-Lari
(1981) for fast experimental estimation of peening induced residual stresses
is also intimately related to eigenstrains as both quantities are proportional
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(Terasaki et al., 1999). Thermal strains, plastic strains, and volumetric ex-
pansion caused by phase transitions or solvent absorption are some examples
of eigenstrains. In shot peened parts, only plastic strains usually contribute
to the eigenstrains ε∗.

In any structure free of external loads, residual stresses and distortions
can always be attributed to an incompatible eigenstrain field. If the latter
is known, or if it can be estimated with sufficient accuracy, then the com-
putation of stresses and distortions — the direct problem — can be dealt
with as an inclusion problem (Mura, 1987). This approach has been suc-
cessfully applied to a variety of engineering problems as illustrated by Deng
et al. (2007), Hu et al. (2015), and Depouhon et al. (2015) where the authors
respectively investigated residual stresses and distortions induced by weld-
ing, laser peening and thermo-mechanical treatments. In all of these studies,
the authors made use of a two-step procedure involving a local analysis to
compute eigenstrains followed by a global springback analysis to obtain the
final deformed shape. To map eigenstrains to large scale models, the source
of the loading was considered analogous to a thermal expansion. Thermal
expansion coefficients α equal to the eigenstrains were defined over the whole
domain (αij = ε∗ij) and a unit increment of temperature was applied. The
validity of this procedure stems from the fact that two identical eigenstrain
fields yield the same residual stresses and distortions, whatever the physical
phenomenon that causes them.

It is commonly accepted that eigenstrains generated by surface treat-
ments are insensitive to the surface’s topography, provided that curvatures
vary gradually and that the target is exempt of sharp geometric features (Ah-
dad and Desvignes, 1996). This was confirmed experimentally by Coratella
et al. (2015) on laser peened Al. 7050 samples. Zhang et al. (2008) also
demonstrated that eigenstrains arising in 17-4 PH steel strips shot peened in
the conditions of the study were independent of the strips thickness. They
suggested that this result might hold for a variety of materials and peen-
ing conditions. Similar observations by Achintha and Nowell (2011) on laser
peened Ti-6Al-4V support Zhang and collaborators’ hypothesis. These re-
sults further suggest that the effect of a given treatment could conveniently
be characterized—either numerically or experimentally—in terms of eigen-
strains on small representative volumes of the target material. For example,
peening a small strip could enable estimating the post-peening state of a
massive part subjected to the same sequence of operations, as was already
suggested by Niku-Lari (1981).
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Since eigenstrains cannot be measured directly, they have to be recon-
structed from various experimental data such as elastic strains or residual
stresses. It is a complex inverse problem in the general 3D case (Jun et al.,
2011), but several robust reconstruction procedures have been developed for
specific configurations. They include closed form relations between residual
stresses and eigenstrains such as those reported by Ahdad and Desvignes
(1996) and Korsunsky (2005), as well as more generic numerical procedures.
Korsunsky (2006), for example, started by postulating a form of the eigen-
strain field as a sum of trial basis functions, ε∗ = ∑N

k=1 ckε
trial
k . The choice

of basis functions was guided by some a priori knowledge of the eigenstrain
field shape, and the objective of the procedure was to find coefficients ck that
minimized the squared difference between measured and simulated residual
elastic strains. The latter were obtained by successively inputting each basis
function in a linearly elastic model of the structure of interest. For a linearly
elastic model, the solution to this least-square problem is unique.

2.2. Experimental peen forming results from the literature
2.2.1. Coverage and Almen intensity

The post-peening state of a shot peened part depends on numerous pa-
rameters, such as: characteristics of the part itself (material, geometry),
properties of the shots (material, size and shape) and process parameters
(type of peening machine, type of fixtures used to secure the part, veloc-
ity of the shots, angle of impingement, stand-off distance, mass flow rate,
peening time and trajectories). As a consequence of the random nature of
the process, many of these parameters have to be described by appropriate
statistical distributions.

In industrial practice, only two parameters, namely coverage and Almen
intensity, are typically used to characterize peening treatments. Coverage
is defined as the fraction of the surface covered by dimples if it is smaller
than 98 %, and as a multiple of the time necessary to reach full coverage
otherwise. (For example, 200 % coverage is obtained by peening a sample
twice the time necessary to reach full coverage.) Almen intensity is an indirect
measurement of the energy conveyed by the shot stream. It is obtained by
peening normalized SAE 1070 steel strips in the same conditions as the part
for increasing peening times, and is defined as the deflection of the strips (in
unit of length) read at the peening time for which doubling the peening time
would cause the deflection to increase by 10 %.
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2.2.2. Large scale experimental campaigns
To the best of our knowledge, only Kulkarni et al. (1981) (supported by

Boeing) and Villalva-Braga (2011) (supported by Embraer) reported exten-
sive peen forming results in the open literature. Other studies, such as the
work of Miao et al. (2010) on aluminum alloy 2024-T3, investigated com-
paratively fewer peening conditions and were limited to small specimens—
predominantly 76 × 19 mm Almen strip-like geometries.

Kulkarni et al. (1981) peen formed both 2024-T3 and 7075-T6 aluminum
alloys rectangular plates. The specimens were 610 mm long, with varying
length to width ratios and thicknesses. The influence of shot speed, shot
size, coverage, the geometry of the samples and their orientation with re-
spect to the rolling direction were investigated. These results highlight the
complex dependence of a specimen’s final curvature on peening conditions.
In particular, a transition from spherical shapes (identical curvatures in both
longitudinal and transverse directions) to cylindrical shapes (one curvature
small compared to the other) as either the shot speed increased or as the
length to width ratio approached unity was repeatedly illustrated. The fact
that residual stress measurements were not reported hinders the comparison
of these results against additional simulations.

Villalva-Braga (2011) peened formed 429 400 × 50 mm Al. 7050-T7451
and Al. 7475-T7351 strips, with thicknesses ranging from 2 to 15 mm. Pre-
strain in the form of a uniaxial bending was applied to half of the samples
while the other half was free to deform. Numerous peening treatments were
investigated. These results are further discussed in the following sections
where they serve as a benchmark for our simulations. Only peening condi-
tions for which residual stress measurements were available were retained,
namely Al. 7050-T7451 strips peened with the treatments listed in table 1.
Residual stresses were measured for each peening condition in the longitudi-
nal direction (private communication) by X-ray diffraction on 50 × 50 mm
strips cut from one sample.

3. Experimental methods

3.1. Peening conditions
All peen forming experiments were carried out by Korea Aerospace In-

dustries, an industrial partner. Two peen forming treatments representative
of industrial practices were selected, namely: a saturation treatment, and
a more intense forming treatment. Table 2 lists the media type, coverage,

6



Table 1: Peen forming treatments used by Villalva-Braga (2011) for 10 and 15 mm thick
plates

Treatment ID Media† Coverage Prestrain‡ Shots velocity (m/s)
1, 2, 3 S550 200 % No 16.2, 22.4, 28.6
4, 5, 6 S550 200 % Yes 16.2, 22.4, 28.6
7, 8, 9 1/8” (steel) 200 % No 12.5, 16.9, 18.5

10, 11, 12 1/8” (steel) 200 % Yes 12.5, 16.9, 18.5
† S550 and 1/8” shots are 1.4 mm and 3.2 mm in diameter respectively
‡ Prestrain amplitude depends on the thickness

Table 2: Peen forming treatments used in the experimental campaign

Treatment Media† Coverage Almen intensity
Saturation S230 100 % 16.8 A
Forming 1/8” (steel) 80 % 22.9 C
† S230 and 1/8” shots are 0.6 mm and 3.2 mm in diameter re-

spectively

and Almen intensity for these two process conditions. The treatments were
applied by the same operator with a portable peening hose. A mass flow rate
of 4.3 kg/min, with an approximate stand-off distance of 760 mm, was used
for the saturation treatment. A mass flow rate of 8.7 kg/min, with an ap-
proximate stand-off distance of 45 mm, was used for the forming treatment.
The parts were free to deform during peening.

3.2. Samples
Three kind of samples were peened:

• 1000 × 1000 mm 2024-T3 plates of thickness 5, 10 and 15 mm were
used for large scale forming experiments. One plate of each thickness
was formed with each treatment (for a total of 6 plates).

• 200 × 50 × 10 mm strips were used to assess process variability. The
strips were peened in the same conditions as the plates at 40 %, 60 %,
80 %, and 100 % coverage. Three strips were peened for each condition
(for a total of 24 strips).
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• 250 × 250 × 15 mm blocks were used for residual stress measurements.
For each treatment, one block was peened in the same conditions as
the plates (for a total of 2 blocks).

The 5, 10, and 15 mm thick samples were machined from the same 9.53, 12.7,
and 19.05 mm thick sheets, respectively. The same amount of material was
removed from both sides of the original plates.

3.3. Residual stress measurements
Residual stress profiles were measured by X-ray diffraction at the center

of the 250 × 250 × 15 mm blocks by Proto Manufacturing Ltd. on a Proto-
LXRD machine equipped with a copper X-ray tube. Diffracting planes {311}
and a radiocristallographic constant of 52.94 GPa were selected. A single
profile corrected for material removal and stress gradients was generated for
each treatment.

3.4. Deformed shapes measurements
Post-peening deformed shapes were acquired by scanning the parts’ sur-

face with a coordinate-measuring machine (CMM). The samples were gently
held into place with clips during scanning. An 11 by 11 points grid was used
for plates whereas strips were scanned along two perpendicular lines passing
through the middle of the sample. For strips, measurements were performed
on the unpeened side and the position of the probe was recorded every 35 µm.

The orientation of all the specimens relative to the rolling direction was
not recorded. In particular, we had no available information regarding the
direction in which residual stress profiles were measured.

4. Peen forming simulation strategy

4.1. Strategy overview
We adopted a conventional local-global approach where eigenstrain pro-

files were reconstructed from local residual stress measurements, then mapped
onto thin-shell structural models to compute final deformed shapes.

The experimental approach was preferred to local impact simulations as
identifying a suitable material model for thin rolled aluminum plates sub-
jected to complex, possibly nonproportional loads, represented a significant
challenge. In both the reconstruction procedure and global simulations, it
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Figure 2: Axis convention

was assumed that strains remained small and that the additive decompo-
sition ε = εel + ε∗ of the total strain ε between an elastic part εel and
eigenstrains ε∗ held true. Note that since the only source of eigenstrains in
shot peened parts is plastic strains, ε∗ actually corresponds to the plastic
part of the strain tensor.

In what follows, the directions along the length and the width of the
plates are referred to as x and y respectively, while z denotes the direction
normal to the surface. The plate midplane is located at z = 0, and the top
and bottom surfaces at z = h

2 and z = −h
2 , where h is the plate thickness.

These conventions are summarized in Figure 2.

4.2. Local analysis: reconstructing eigenstrain profiles
The eigenstrain fields were reconstructed from limited local residual stress

measurements following the inverse procedure reported in Korsunsky (2006).
We assumed eigenstrain profiles of the form ε∗xx(z) = ε∗yy(z) = ∑N

k=1 ckξk(z),
ε∗zz(z) = −2ε∗xx(z) (due to plastic incompressibility) and all other components
being equal to zero. This is the form we expect when the target has negligi-
ble plastic anisotropy and the coverage is sufficiently high. The ξk are basis
functions and the ck are free unknown parameters. Korsunsky’s procedure
returns the ck that minimize the error between experimental residual stresses
and residual stresses derived from the assumed eigenstrain field. The same
basis functions as Korsunsky (2006) were used, namely

ξk(z) =


(

h
2 − z0 − z

)k+2
for h

2 − z0 ≤ z ≤ h
2 ,

0 otherwise,
(1)

where z0 is the depth of the plastically deformed layer. Since the problem is
non-linear in z0, Korsunsky (2006) suggested to run the reconstruction proce-
dure several times, each time with a different value for z0, and to retain only
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the ’best’ match. In our implementation, this was done by supplementing the
reconstruction procedure by an outer optimization loop over z0 (performed
with Matlab’s default fminsearch function). The number N of terms in the
approximation was set at the beginning of the identification process. It was
always taken significantly smaller than the number of experimental points.

Computing the residual stresses for a given eigenstrain profile — the di-
rect problem — requires a model of the structure in which the eigenstrains
are inputted. Because of the optimization loop, the direct problem had to
be solved numerous times. In order to speed up the process, we used an
analytical strength of materials thin plate model identical to that used by
Korsunsky (2005). Once a satisfactory value of z0 was found, the final eval-
uation of the ck coefficients was carried out on a 3D finite element model of
the samples. This additional step was deemed necessary in order to relax the
thin-shell assumption of the analytical plate model used in preliminary runs,
as some residual stress measurements were performed on thick samples. All
finite element simulations were done with Abaqus 6.14. Meshes of C3D20R
brick elements with at least 10 elements over z0 were used. It should be noted
that in all the cases investigated, the values of the coefficients ck obtained
from the analytical model and from the 3D finite element simulations were
almost identical.

4.3. Global analysis: computing deformed shapes
4.3.1. Finite element simulations

Since peen forming usually involves large deflections, the models used to
compute the deformed shape of peen formed parts must take geometric non-
linearities into account. In what follows, we used off-the-shelf finite element
models with large deflection capabilities.

All finite element simulations were done with Abaqus 6.14. The struc-
tural models were discretized with regular meshes of multipurpose S4R shell
elements checked for convergence. The three translations and the three rota-
tions were set to zero at the central node of the model to prevent rigid body
modes. Eigenstrain profiles were input in the finite element models accord-
ing to the thermal analogy discussed in section 2.1. We used the USDFLD
and UEXPAN subroutines to specify the appropriate through-thickness ex-
pansion coefficients at each section point. The expansion coefficient values
were computed using USDFLD, which can access section point information,
and passed as arguments to UEXPAN. Between 10 and 20 section point were
used over the thickness z0 to accurately approximate the eigenstrain profiles.
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To ensure that no additional plastic deformation occurred during springback,
through-thickness von Mises equivalent stresses were compared to the yield
stress of the material at the end of each analysis.

Note that less computer intensive analytical models could have been used
for the simple rectangular geometries considered in the next sections. (For
example, curvatures can be straightforwardly computed from simple strength
of materials models, like that used in section 4.2, when deflections are small).

4.3.2. Loads idealization
Since external loads are integrated over the thickness in conventional

thin shell formulations, inputting an idealized profile with the same resulting
forces and moments as the complete profile yields identical deformed shapes.

For illustration purposes, consider a profile of the form ε∗xx(z) = ε∗yy(z) =
γ(z), (ε∗zz(z) = −2γ(z)). We define the resulting eigenstrain A =

∫+ h
2

−h
2
γ(z)dz

and the first eigenstrain moment B =
∫+ h

2
−h

2
γ(z)zdz. These quantities are

respectively proportional to the axial force and bending moment per unit
length. The simplest idealized profile, which is also the most convenient to
input, is a step of amplitude ε∗eq over a depth heq. For the idealized profile to
yield the same resulting loads as the original one, equilibrium requires that
A = heqε

∗
eq and B = heqε

∗
eq

(
h−heq

2

)
, or heq = h− 2B

A
and ε∗eq = A2

Ah−2B
.

A fictitious eigenstrain profile and its idealized counterpart are shown in
Figure 3. It can most conveniently be input in any numerical thin plate model
by defining a bi-layer laminate section property consisting of an ‘active’ layer
of thickness heq with expansion ε∗eq, and a ‘passive’ layer. The same approach
also applies when ε∗xx(z) 6= ε∗yy(z): in that case, writing the equilibrium of
forces and moments in both x and y directions yields two pair of parameters
and the idealized profile can be input by defining a tri-layer stacking sequence
with the appropriate expansion in each direction (bi-layer if both directions
share the same heq). Note that, although using an idealized eigenstrain profile
yields the same deformed shape as the complete profile, residual stresses will
differ. These simplifications are relevant in a peen forming context were the
primary concern is to get the shape of the part right and residual stresses
are seen merely as a positive side effect.

4.3.3. Dimensional analysis
The final deformed shape of peen formed plates having the same shape,

but not necessarily the same thickness, or scale, depends on: a characteris-
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Figure 3: Fictitious eigenstrain profile and idealized profile with equivalent resulting
eigenstrain and first eigenstrain moment. The original profile is of the form γ(z) =∑4
k=1 ckξk(z), with c1 = −5.65 × 10−3, c2 = −6.38 × 10−3, c3 = −2.48 × 10−3 and

c4 = −3.22 × 10−4, with z0 = 2.05 mm. The definition of the basis functions ξk is given
in section 4.2. The idealized profile is a step of amplitude ε∗eq ' 1.80× 10−3 over a depth
of heq ' 1.35 mm. Those two profiles yield the same deformed shapes when input in thin
shell models.
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tic length of the plate L and its thickness h (geometry), the Poisson ratio
ν (material), and, (assuming equi-biaxial expansion of the upper layer) the
resulting eigenstrains A and first eigenstrains moment B (loads). It does not
depend on Young’s modulus E. Indeed, the modulus is the only quantity
that has the dimension of a pressure, thus it cannot be used to form any
dimensionless group. This is a consequence of the loads being fully char-
acterized in terms of eigenstrains. Physically, inputting a given eigenstrain
profile into a stiff (resp. flexible) material will induce large (resp. small)
residual stresses that will be counter-balanced by the plate’s rigidity (both
quantities scale with the modulus). Let κx be the curvature at the center of
the plate along the x axis (resp. κy along the y axis). Using this quantity
to characterize the deformed shapes, dimensional analysis requires that the
problem be fully characterized by 5 dimensionless groups.

We now introduce the dimensionless loads ΓA and ΓB, defined respectively
as the ratio of in-plane loads over in-plane rigidity, and as the ratio of bending
moments over bending rigidity1. These parameters account for the combined
effect of the treatment and the geometry. The former governs in-plane behav-
ior and the latter the bending response. For beams (section 5.1), ΓA = A/h
and ΓB = 12B/h2, whereas for thin plates (section 5.2), ΓA = (1 + ν)A/h
and ΓB = 12(1+ν)B/h2. The other dimensionless groups we chose were κxh
(resp. κyh), ν, and L/h.

In what follows, all peen forming results are presented by plotting κxh

and κyh as a function of ΓB after both quantities were rescaled by
(

L
h

)2
. This

scaling (obtained by inspection) forces data obtained for different L/h ratios
to collapse onto a single master curve.

5. Applications and results

The simulation strategy presented above was validated against experi-
mental results from Villalva-Braga (2011), and against experimental results
generated for the purpose of this study. Incomplete data compelled us to

1The biaxial modulus of a plate is given by E
1−ν and its bending rigidity by Eh3

12(1−ν2) .
The axial modulus of a beam is E and its bending modulus Eh3

12 . The only loads applied
to the system are caused by the eigenstrains. For thin plates whose upper layers expands
equibiaxialy, σxx(z) = σyy(z) = E

1−ν2 (1+ν)γ(z), and in-plane loads and bending moments
per unit length—obtained after integration over the thickness—are given respectively by
E

1−νA and E
1−νB. Similar expressions are obtained for beams by replacing E

1−ν with E.
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make several additional hypotheses on both data sets. These hypotheses are
listed before each result section.

5.1. Validation against experimental results from Villalva-Braga (2011)
5.1.1. Working hypotheses

Forming simulations were done according to the procedure presented in
section 4. A Young’s modulus of 71 GPa and a Poisson’s coefficient of 0.33
from the MMPDS-08 handbook were used for all simulations.

In Villalva-Braga (2011)’s experiments, prestrain in the form of a uniaxial
bending about the y axis was applied to half of the samples. For prestrained
plates, as well as for plates that bend significantly, it is expected for ε∗yy to
be smaller than ε∗xx (Hu et al., 2015). As a consequence, it was necessary
to reconstruct both in-plane components of the eigenstrain field, as both
enter the computation of residual stresses (simulated residual stress profiles
that the reconstruction procedure attempted to match with measurements
depend on the whole eigenstrain field). Since residual stresses measurements
in the transverse direction were not available, we assumed an eigenstrain
distribution of the form ε∗yy(z) = αε∗xx(z), 0 ≤ α ≤ 1. This approximation
was expected to yield results close to those observed on slightly bent plates
for α = 1, whereas taking α = 0 yielded an upper bound for ε∗xx.

As Korsunsky’s reconstruction procedure relies on a linearly elastic model
of the structure to compute residual stresses, eigenstrain profiles were not
extracted from 2 mm thick as well as from some 5 mm thick samples for which
the maximum out of plane displacement ∆z was not small when compared
to the thickness h (∆z > h

10), and for which geometric nonlinearities might
have had to be taken into account.

5.1.2. Results
Table 3 summarizes parameters used to extract eigenstrain profiles on

10 mm thick plates, as well as the characteristics of the idealized profiles used
as loads in finite element simulations. The table shows that the depth of the
plastically deformed layer z0, the depth of the idealized profile heq, and its
amplitude ε∗eq rise as the intensity of the treatment increase. It can also be
seen that z0 et heq are independent of the choice of α.

Figure 4 displays the eigenstrain profiles extracted for treatments 7 to
9 on free-to-deform 10 mm and 15 mm thick plates. Contrary to the obser-
vations of Zhang et al. (2008), it appears that they depend on the plate’s
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Table 3: Parameters for the reconstruction of eigenstrain profiles on 10 mm thick plates
and characteristics of idealized loadings

Treatment ID N† z0
†(mm) heq(mm) ε∗eq (×10−3)

α = 1 α = 0
1 4 0.76 0.44 2.60 3.46
2 3 0.80 0.54 2.65 3.52
3 4 1.09 0.63 3.29 4.37
4‡ - - - - -
5 4 1.39 0.76 4.05 5.39
6 5 1.42 0.90 4.09 5.44
7 3 0.95 0.66 3.01 4.00
8 6 1.44 1.09 3.57 4.75
9 6 1.65 1.35 3.91 5.19
10 4 1.50 0.80 4.02 5.34
11 5 2.20 1.23 5.09 6.76
12 7 2.35 1.27 5.03 6.69

† Parameters N and z0 uniquely define the profile for a given set
of basis functions and a given set of experimental data.

‡ Satisfactory reconstruction was not achieved.
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Figure 4: Eigenstrain profiles reconstructed from residual stress measurements of Villalva-
Braga (2011) on 10 and 15 millimeter thick plates that were free to deform during peening.
It was assumed that ε∗xx = ε∗yy (α = 1). Treatment number: (a) 7; (b) 8; (c) 9

thickness. It can be seen, however, that from one plate thickness to the next,
the profiles have a similar shape and an almost identical z0.

Figure 5 compares simulated and experimental curvatures for 10 mm and
15 mm thick plates. Although forming operations were automated, the data
exhibits significant scatter. For the thinner samples peened with smaller
shots, most experimental points lie within the bounds delimited by simula-
tions. The agreement between simulations and experimental results deterio-
rates as the treatment intensity increases. For 5 mm thick plates (results not
shown here), simulation consistently underestimated experimental curvatures
with relative errors ranging from 20 to 75 %, even though a seemingly satis-
factory reconstruction of the eigenstrain profiles was achieved. The specific
reasons for this behavior are yet to be understood.

Figure 6 shows the same results (for α = 1 only) cast into dimensionless
form. The results are superimposed to the results of several hundred finite
element simulations whose parameters (L, h, heq, and ε∗eq) were randomly
selected from a range a realistic values (ν was kept constant). All numerical
results collapse onto a single master curve. Experimental points follow the
same trend, except for the outliers identified in Figure 5.

5.2. Peen forming of large 2024-T3 panels
5.2.1. Working hypotheses

Forming simulations were done according to the procedure described in
section 4. A Young’s modulus of 73.5 GPa and a Poisson’s ratio of 0.33 from
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Figure 5: Experimental and simulated curvatures for (a) 10 mm thick and (b) 15 mm thick
samples peen formed by Villalva-Braga (2011). Experimental conditions are available in
Table 1. Treatments’ intensity increases with treatment ID.
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Figure 6: Dimensionless curvature κxh
(
L
h

)2 as a function of dimensionless loads ΓB
(
L
h

)2

for strips of aspect ratio 1 : 8. All parameters for finite element simulations, except ν,
were randomly selected from a range of realistic values. Experimental points for α = 0
are not shown to avoid clutter. They are slightly offset to the right
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the MMPDS-08 handbook were used for all simulations.
Since residual stress measurements were available for the 1000 × 1000 mm

plates, the eigenstrain profiles extracted from the thick 250 × 250 × 15 mm
blocks were used as input for all forming simulations. This choice was moti-
vated by the results of Zhang et al. (2008) and Achintha and Nowell (2011)
that suggest that peening induced eigenstrain profiles are independent of the
part’s thickness.

A small imperfection was introduced in the global model to break its
symmetry and trigger potential elastic instabilities. These imperfections took
the form of a +1 % difference between the amplitude of the expansion input
in the model in the x direction (resp. -1 % in the y direction) and ε∗eq.
(For actual peen formed parts, such imperfections would be a consequence
of material anisotropy, geometric imperfections, boundary conditions and
process variability.)

Simulations presented hereafter do not include gravity as running the
same simulations considering gravity resulted in variations of curvatures
lower than 3 % in all cases.

5.2.2. Results
Figure 7 displays measured residual stress profiles, along with residual

stress and plastic strain profiles reconstructed using the procedure of sec-
tion 4.2, for the 250 × 250 × 15 mm blocks. Figure 7a shows that differ-
ences between experimental data and reconstructed residual stress profiles
mostly lie within experimental errors, the most significant discrepancy being
of 25 MPa. Figure 7b shows that the plastically deformed layer of the form-
ing treatment is about twice as deep as that for the saturation treatment.
Although the magnitude of both profiles is similar, residual stresses near
the surface are lower for the forming treatment due to the bending of the
samples. Table 4 lists the parameters used to extract eigenstrain profiles, as
well as characteristics of the idealized profiles used as loads in finite element
simulations.

CMM scans of the 200× 50× 10 mm strips revealed that curvatures in the
transverse direction were always larger than curvatures in the longitudinal
direction for this specific geometry, as shown in figure 8. This could be
attributed to the known plastic anisotropy of the 2024-T3 aluminum alloy
(Bron and Besson, 2004). Indeed, the elastic response of this alloy is almost
perfectly isotropic and the curvatures of thick blocks should be identical in
both directions if their upper layers expand equi-biaxially.
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Figure 7: (a) Residual stresses measured by X-ray diffraction on 250 × 250 × 15 mm blocks
of 2024-T3 superimposed onto the residual stress profiles derived from the eigenstrain fields
from Figure 7.b. (b) Eigenstrain profiles reconstructed with Korsunsky (2006) procedure.
The parameters used for the reconstruction are reported in table 4
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Table 4: Parameters for the reconstruction of eigenstrain profiles and characteristics of
idealized loadings

Treatment N z0 (mm) heq (mm) ε∗eq (×10−3)
Saturation 4 1.26 0.72 3.22
Forming 3 2.44 1.51 3.42

Figure 8: Measured curvatures as a function of coverage along longitudinal and transverse
directions on 200 × 50 × 10 mm strips for both saturation and forming treatments.
Simulated curvatures obtained by inputting the eigenstrain profiles from Figure 7 in a 3D
finite element model of the strips are also reported. For the simulations, curvatures in
both directions are equals
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Figure 9: Measured deformed shapes (not to scale) of 1× 1 m 2024-T3 plates of thickness
(a) 15 mm, (b) 10 mm and (c) 5 mm subjected to the forming treatment. The plates were
free to deform during peening. Interpolation of the surface between experimental points
is here only to guide the eye. Similar shapes were observed for the saturation treatment.

Figure 10: Cross sectional views in the (xz) plane passing through the center of the plates
of the results of Figure 9.

CMM scans of the 1000 × 1000 mm plates revealed that thick shot-
peened plates consistently adopted an hemi-spherical shape, whereas thinner
plates deformed cylindrically. This is illustrated in Figure 9 for the forming
treatment. The magnitude of the out-of-plane deflection varied significantly
between those two configurations, as shown in Figure 10. Curvatures at the
center of the plate along the x and y axes are given in Table 5. It should
be noted that the curvatures were always approximately constant over the
scanning lines, with the exception of slight variations near the edges.

Table 5 compares simulated curvatures against validation experiments.
The table reveals that simulations successfully captured the overall deformed
shapes (i.e., spherical or cylindrical). Quantitative agreement is only satis-
factory for the 15 mm thick plate submitted to the forming treatment (note
that the eigenstrain profile was extracted from a sample of the same thick-
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Table 5: Experimentally measured and simulated curvatures for 1000 × 1000 mm 2024-T3
plates.

Treatment Thickness (mm) Experiments (1/mm) Simulations (1/mm) Relative error (%)
κx κy κx κy Along x Along y

Saturation 5 4.25× 10−4 ' 0 5.82× 10−4 ' 0 37 -
Saturation 10 5.86× 10−5 5.55× 10−5 8.71× 10−5 7.13× 10−5 49 28
Saturation 15 3.15× 10−5 2.84× 10−5 5.53× 10−5 5.26× 10−5 76 85
Forming 5 2.17× 10−3 ' 0 1.10× 10−3 ' 0 -49 -
Forming 10 3.08× 10−4 ' 0 2.63× 10−4 ' 0 -15 -
Forming 15 9.93× 10−5 7.91× 10−5 9.71× 10−5 8.91× 10−5 -2 13

ness). Curvatures were largely underestimated for thinner plates for the
forming treatment. They were overestimated in all cases for the saturation
treatment.

Figure 11 presents the results of Table 5 cast into dimensionless form.
They are superimposed to the results of several hundred finite element simu-
lations whose parameters (except ν, which was kept constant) were randomly
selected from a range a realistic values. Finite element simulations reveal
that, for small dimensionless loads, curvatures are identical in both principal
directions, yielding a spherical shape. As dimensionless loads increase, one
of the curvatures drops to zero while the other increases steadily, yielding a
cylindrical shape. Between those two extremes, simulations predict a narrow
region where curvatures assume distinct but nonzero values. Such elliptic
shapes can indeed be observed in Figure 9.b.

6. Discussion

The procedure presented in this article differs from existing peen forming
simulations in that the link between the loads used in global simulations and
the post-peening state is now explicit, thus bypassing the need for lengthy
calibration phases. This was made possible by determining the plastic strain
field for each combination of material, treatment and prestrain. The proce-
dure is otherwise similar to those reported by Levers and Prior (1998) and
Wang et al. (2006), and is almost identical to the procedure reported in
Gariépy et al. (2011). Indeed, induced stresses used as loads by Gariépy et
al.—defined as ‘unbalanced residual stresses [...] encountered in a fully con-
strained component that does not allow stretching or bending’—are directly
proportional to eigenstrains (Korsunsky, 2005).
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Figure 11: Dimensionless curvatures κxh
(
L
h

)2 and κyh
(
L
h

)2 as a function of dimensionless
loads ΓB

(
L
h

)2 for square panels. The tags F and S refer to the forming and to the
saturation treatments respectively. Results for the 5 mm plate subjected to the forming
treatment lie outside the graph at (230, 0) and (230, 434). All parameters for finite
element simulations, except ν, were randomly selected from a range of realistic values.
For dimensionless loads smaller than ' 22, there is a single spherical equilibrium shape.
For larger values of this parameter, two cylindrical configurations (bending along x or
bending along y) and one instable spherical configurations coexist. A small imperfection
was input in the model to trigger the transition from the unstable spherical to a stable
cylindrical shape.
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The results of section 5.1 revealed that the proposed procedure yielded
excellent agreement between simulated and experimental curvatures for mod-
erate intensity treatments, both for free-to-deform and stress peen formed
(i.e. prestrained) parts, provided that the post peening state was accurately
known. For large shots, experimental results lay outside the bounds delim-
ited by simulations. Recall that those bounds were obtained for limiting cases
(namely uniaxial and equi-biaxial plastic strains). Identifying the reason be-
hind these discrepancies is yet to be done. Obtaining more experimental
data could provide more insight. In particular, some characterization of the
response in the transverse direction would have been desirable.

In Section 5.2, the same procedure was applied to predict the deformed
shape of free-to-deform plates based on residual stress measurements per-
formed on thick blocks of material. Recall that these simulations were car-
ried out under the assumption that shot-peening-induced plastic strains were
independent of the part’s thickness. This approach significantly underesti-
mated the curvature of free-to-deform thin panels subjected to the forming
treatment. The eigenstrain profiles reported in Figure 4 suggest that this
difference could be attributed to the stress peen forming that takes place as
the plates deform: thinner plates exhibit larger curvatures, larger prestrains
and hence larger subsurface expansion than those measured on thicker plates.
Unlike the stress-peen forming experiments of Villalva-Braga (2011), the pre-
strain was a consequence of the continuous re-balancing of the part. Not only
was it complex and continuously evolving as the treatment progressed, it was
also path dependent. For this kind of simulations, the local and global mod-
els would have to be coupled, as was already concluded by Cao et al. (1995)
and Gariépy et al. (2011). The coupling was not accounted for in this article.
The main impediment in simulating free-to-deform panels is the availability
of models able to produce fast estimates of the post-peening state, possibly
for partial coverages, for each increment of the simulation. Identifying a suit-
able material model for the aluminum alloys that are used to manufacture
the vast majority of peen formed parts is another (plastic anisotropy, cyclic
non-proportional loading and experimental identification on thin sheets). We
recognize that simplified procedures could be developed for special cases as
was done by Cao et al. (1995) for parts treated until saturation (i.e. for
which an increase in peening time does not result in additional deflection).

These elements do not explain why the curvatures induced by the satura-
tion treatment were overestimated. One possible explanation is that the sim-
ulations did not account for the 2024-T3 aluminum alloy’s plastic anisotropy.
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This plastic anisotropy could lead to direction-dependent plastic strains. If
the only residual stress profile available for the saturation treatment—which
was then used to feed the forming simulations—was measured in the direc-
tion along which the magnitude of plastic deformations was the largest, it
is likely that simulated curvatures were over-estimated. This supposes that
the contribution of continuous re-balancing (if there is one) was small com-
pared to the contribution of plastic anisotropy, which is possible since plates
peened with the saturation treatment were only slightly bent (the out of
plane deflection of the 5 mm thick plate formed with the saturation treat-
ment is 63 mm). Additional residual stress measurements would be necessary
to confirm this hypothesis. Variability in the process could also play a role.
Indeed, the process is intrinsically random and some dispersion is unavoid-
able, as illustrated in Figures 5 and 8 (note that every sample was peened
under the same conditions and that the results of Villalva-Braga (2011) were
generated on an automated peening setup). Here, we tacitly assumed that
the only residual stress profiles available were representative of the average
post-peening state. It is to be expected that the effect of this dispersion
would be less pronounced for thicker plates, as finite element simulations of
Figure 11 predict that variations in subsurface expansion do not affect curva-
tures as significantly as they do for thinner plates (the sensibility of curvature
with respect to the ‘intensity’ of the treatment for a given geometry, which
corresponds to the slope of the curve, is approximately twice as low before
the bifurcation than it is after).

Although it failed at making quantitative predictions in a number a sit-
uations, the proposed model captured the main features of the response of
peened formed plates, in particular the transition from spherical to cylindrical
shapes evidenced in Figures 9, 11, and by Kulkarni et al. (1981). Neglected
by the peening community, similar phenomenon (i.e. the shape transition
of a thin plate whose upper layers expand/contract) have been extensively
studied in the context of composites (Hyer, 1981) and MEMS manufacturing
(Freund and Suresh, 2004). Even though the physical sources of eigenstrains
may differ, the model system used in those publications is identical to that
presented here (a thin multilayer plate with prescribed strain mismatch). By
thinking in terms of eigenstrains, it is possible to transpose the conclusion
that the transition results from an elastic instability to our specific problem.
Insight into the physics of the transition can be gained by considering the
following argument (see Pezzulla et al. (2016) and Freund and Suresh (2004)
for a more in depth analysis): for a thin plate, the elastic energy of a cylindri-
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cal shape (pure bending without extension of the neutral axis) varies with h3

whereas the elastic energy of a spherical shape (purely in extension as spheres
are non-developable surfaces) varies with h. Since the plate seeks to adopt
the shape with minimal energy, the sphere is favored for large thicknesses
and vice-versa. The bifurcation occurs when the two energies are compara-
ble. Past the bifurcation point, the spherical shape remains an equilibrium
configuration but it is unstable (Fig. 11). Note that in Figure 11, the pro-
gressive nature of the transition is a consequence of the small imperfections
input in the model.

Figure 11 also demonstrated that with a proper choice of dimensionless
parameters, the results of all simulations, as well as most experiments, col-
lapsed onto a single master curve. Similar curves can readily be obtained for
random geometries, as illustrated in Figure 6 for rectangular strips of aspect
ratio 1 : 8. They enable fast appreciation of the influence of the treatment,
thickness and scale, and could prove most useful to support fast engineering
decisions in developing peen forming strategies. One could also envision ad-
justing peening parameters and peening patterns on scale models of complex
parts before scaling up to production. This would be of particular interest to
industrials as discussed in Kulkarni et al. (1981). Scaling relations derived
from the results of Section 4.3.3 are given in the appendix for information.

7. Conclusion

In this article, we demonstrated that a decoupled local-global simula-
tion procedure based on the concept of eigenstrains can predict, without
calibration, the deformed shape of peen formed plates, provided that the
post-peening state of the material is known, or that it can be predicted with
sufficient accuracy. The same procedure was used to predict the shape of
large free-to-deform thin panels based on eigenstrain profiles obtained on
small thick samples. This approach proved to be inadequate when the parts
bent significantly during the peening treatment, i.e. when the local and
global scales were strongly coupled.

A selection of peen forming experiments on large 2024-T3 aluminum alloy
plates was also presented. These results highlighted a transition from spheri-
cal to cylindrical deformed shapes as the thickness of the panels decreased for
a given treatment. By reasoning in terms of eigenstrains, it was possible to
reuse existing results from studies in the fields of MEMS and composite man-
ufacturing to show that this transition was caused by an elastic instability.
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This information could enable industrials to develop new forming strategies
making use of instabilities instead of trying to avoid them (Baughman, 1970).

We believe that this kind of approach (i.e. reduction to previously solved
problems) has the potential to quickly widen the range of tools available for
the simulation of peen forming. Such tools are essentials for peen forming to
get rid of its black-art reputation.

8. Acknowledgements

The authors gratefully acknowledge financial support from Airbus, the
Rio Tinto group through a graduate scholarship, as well as the Canada Re-
search Chairs program.

Appendix A. Scaling relations for geometrically similar peen formed
parts

Consider two geometrically similar plate-like structures, one of which has
been peen formed to the desired target shape, and the other one being a scale
model whose dimensions have been scaled by a factor c. Subscripts 1 and 2
are used to distinguish between the two systems.

If only equi-biaxial in plane eigenstrains develop inside the parts, their
deformed shape is entirely characterized by the couple of dimensionless pa-
rameters {ΓA i,ΓB i}, i = 1, 2. For the two parts to adopt the same deformed
shape, the two systems must have identical ΓA i and ΓB i. If both parts have
the same Poisson ratio, this yields A2 = cA1 and B2 = c2B1, or alternatively,
heq 2 = c heq 1 and ε∗eq 2 = ε∗eq 1.
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