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Abstract

In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfig-

uration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of

polyurethane foam and reinforced with nylon fibers are tested in a wind tunnel. The rods have bending-

torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical

model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation.

Different alignments of the material frame with respect to the flow direction and a range of structural

properties are considered to study their effect on the deformation of the flexible rod and its drag scaling.

Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigid-

ity. It is also found that the Vogel exponent of a reconfiguring rod is not affected by torsion. Finally,

using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized

as a beam undergoing a pure bending deformation.
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1. Introduction

In contrast to engineering structures, plants are generally flexible and deform significantly under

fluid loading. This deformation typically causes drag reduction and is called reconfiguration in biome-

chanics (Vogel, 1984, 1989). Unlike rigid bluff bodies, the drag force on plants is not proportional to

the square of the flow velocity. The drag force on flexible plants varies with the flow velocity as

D ∝ U2+ϑ, (1)
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where ϑ is the Vogel exponent. This exponent quantifies the effect of flexibility on the drag scaling

and is typically negative for plants (Vogel, 1984). Plants reconfigure using two main mechanisms:

frontal area reduction and streamlining. The more negative ϑ is, the more the drag is reduced due to

reconfiguration.

Many experimental drag measurements have been performed on trees (Vollsinger et al., 2005),

crops (Sterling et al., 2003) and algae (Koehl & Alberte, 1988) whether in wind tunnels, water flumes

or their natural setting. This was done to quantify the effect of streamlining and frontal area reduction

on drag scaling. Understanding reconfiguration is necessary to predict or prevent the adverse effect

of strong winds or water flows on plants such as windthrow, uprooting and lodging (Rudnicki et al.,

2004; Berry et al., 2004). Thigmomorphogenesis, or the influence of mechanical stimuli such as wind

loading on the growth of plants, is another area where a better understanding of plant-flow interaction

can make a contribution (Niklas, 1998).

In general, plants are slender and a fundamental understanding of their reconfiguration has therefore

been sought by modeling them as bending beams and plates (Alben et al., 2002, 2004; Gosselin et al.,

2010; Luhar & Nepf, 2011; Gosselin & de Langre, 2011; Schouveiler & Boudaoud, 2006). A flexible

beam undergoing bending due to flow is a simple academic representation of reconfiguration. For

instance, the deformation and the drag of flexible glass fibers have been measured in a two-dimensional

soap film flow which allows modeling and flow visualisation (Alben et al., 2002, 2004). To theoretically

model the bending fiber in the soap film flow, the authors coupled the Euler-Bernoulli beam theory

with an exact potential flow solution using the Helmholtz free streamline theory. Bending plates

made of transparency films were also studied in a wind tunnel (Gosselin et al., 2010). Theoretical

representation of these experiments was done by coupling a semi-empirical drag formulation and the

Euler-Bernoulli beam theory.

Although bending beams and fibers capture the essence of the two-dimensional deformation of

plants, they cannot represent all forms of reconfiguration. Other effects are important in reconfigu-

ration and can influence the Vogel exponent such as: buoyancy (Luhar & Nepf, 2011), poroelastic-

ity (Gosselin & de Langre, 2011), three-dimensional bending deformation (Schouveiler & Boudaoud,

2006). Moreover, the approach of using simple structures was also employed to study inelastic brittle

reconfiguration, i.e., pruning (Lopez et al., 2011; Eloy, 2011).

While the aforementioned fundamental studies focus on bending deformation, torsion has been

ignored in reconfiguration. However, it is known that plants twist significantly under fluid loading. For
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Table 1: The average of twist-to-bend ratio for some natural and engineering structures

Species Geometry η Reference
Isovolumetric material circular 1.5 -

Metallic rod circular 1.3 -
Daffodil stem semi-circular 13.3 Vogel (2007)
Banana petiole U-shape 68 Ennos et al. (2000)
Sedge stem semi-triangle 65 Ennos (1993)
Tree trunk semi-circular 7.34 Vogel (2007)

instance, the stem of a daffodil holds the flower horizontally and twists at the slightest breeze aligning

the flower downwind thus reducing its drag (Etnier & Vogel, 2000). The trunks of trees with crown

asymmetry also undergo significant twist under wind loading. Because of their fibrous construction,

plants and trees are known to twist more easily than they bend (Vogel, 1992; Skatter & Kuera, 1997).

This is quantified by the twist-to-bend ratio,

η = EI
GJ

, (2)

where EI is the bending rigidity and GJ is the torsional rigidity. High values of η represent a structure

which can twist more easily than it can bend. Table 1 shows a comparison between the twist-to-

bend ratios of some natural and engineering structures. In comparison to engineering structures,

branches, petioles and stems have a significantly larger value of η (Vogel, 1992; Pasini & Mirjalili,

2006). Figure 1a shows a schematic of the U-shape cross section of a banana petiole with a large

twist-to-bend ratio of 68. As a result, a banana leaf twists while bending downwind (see Fig. 1b and

c). For comparison, a homogeneous and isotropic material with circular section has a twist-to-bend

ratio equal to 1+ν or 1.3 for metallic materials assuming the Poisson’s ratio is about 0.3 (Vogel, 1992).

Since many plants twist when subjected to flow, the following question arises: What is the effect

of torsional deformation on the reconfiguration of plants and flexible structures, and how does it

change their drag scaling, i.e., their Vogel number? The bending beams and plates of the previous

studies cannot represent the torsional deformation of plants. Therefore a new approach is necessary

to idealize plants with simple structures. In this paper, we consider the reconfiguration of an elastic

rod which can twist and bend. A mathematical model is developed considering the arbitrary large

deformation of a rod subjected to fluid flow. Tests are also done in a wind tunnel on flexible rods

made of polyurethane foam with strategically placed reinforcements to tailor their twist-to-bend ratio

and their twisting-bending coupling.
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Figure 1: Schematics of a banana leaf (a) U-shape cross section of its petiole with a large twist-to-bend ratio; (b) upright
banana leaf; and (c) leaf twisting to bend downwind. Inspired by Ennos et al. (2000).

2. Methodology

2.1. Experimental Procedure and Materials

The large deformation of a flexible rod bending and twisting under pressure drag is studied. The

tests are performed in the closed-loop wind tunnel of the laboratory of Aerodynamics and Fluid-

Structure Interactions at École Polytechnique de Montréal. The wind tunnel has a square test section

of 60 × 60 cm2 and can produce a maximum air speed of 90 ms−1. Figure 2 shows the custom-made

load measuring equipment used for the wind tunnel tests. The test setup consists of a force balance

(3), a speed reduction gearbox (2), and a rotary servo motor (1) mounted on the gearbox. The 6-axis

force balance (ATI GAMMA, ATI Industrial Automation, Apex, North Carolina) used in the present

experiment, measures the aerodynamic forces in addition to the bending and twisting moments. The

set of the servo, gearbox and force balance is mounted on an aluminum frame (4) and a wooden panel

(5) which is used to support the setup on top of the wind tunnel. The rod (6) is fixed to the force

balance inside the test section of the wind tunnel.

The ATI GAMMA force transducer was calibrated to measure a maximum 32 N of transverse

loading, 100 N of axial loading and 2.5 Nm of torque and bending moments. The resolution of the

force transducer is 6.25 × 10−3 N for the transverse loading, 12.5 × 10−3 N for the axial loading and

0.5 × 10−3 Nm for the moments. From static tests with a calibration weight of 200 g, we estimate

the precision of the static force measurement to be within 1 percent of the time-averaged reading.

Moreover, in the wind tunnel tests, the standard deviation of the time fluctuating forces and moments,

mainly due to turbulence buffeting, was evaluated to be between 4 and 10 percent of the time-averaged
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Figure 2: Schematic of the test setup installed on top of the wind tunnel. The setup consists of a servo (1), gearbox (2),
force balance (3), aluminum frame (4), wooden panel (5) and a rod specimen (6).

measurement. For the velocity range of the present experiments, vortex shedding excitation is not

significant because the predicted shedding frequency for a Strouhal number of 0.2 is more than 40 Hz

while the fundamental frequency of the specimens is of the order of 1 Hz. Hence the measurements

represent static values of the lightly fluctuating loads averaged over 30 seconds.

Rods are slender structures which can bend and twist. Rods with circular sections are used to

simplify the geometry and the aerodynamic loading evaluation. For non-circular rods, fluid loading

depends on the angle of each section of the rod with the flow direction i.e. the local angle of attack.

The loading on a circular rod, however, is independent of the twist of the rod’s sections. Moreover, the

flow on a normal cylinder is on average symmetric and is not expected to generate a twisting moment.

Coupling between torsional and bending deformation is achieved through directional rigidity which

induces torsional deformation in a bending rod. This coupling gives rise to three-dimensional defor-

mation. Herein, directional rigidity or asymmetric stiffness (De Goeij et al., 1999) refers to different

bending rigidities in different directions.

Using this concept, composite rods are made using polyurethane foam and are reinforced in one

direction using nylon fibers (see Fig. 3). Nylon fibers are pre-aligned along the axis of a non-stick Teflon

tube. They are distributed along one diameter in the cross section of the rod to achieve directional

rigidity. Two types of nylon fibers with different diameters and Young’s moduli are used: df = 0.3 mm

and Ef = 3300 MPa, df = 0.75 mm and Ef = 2360 MPa. The two-component polyurethane foam used

(Flexfoam-iT, Smooth-on Inc., Easton, Pennsylvania) expands up to 6 times its original volume upon

mixing. The mixture is poured and pressurized in the tube and left to harden over 4 to 5 hours.
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The rigidity of the rod depends on the amount of foam inside the mold, diameter of the fabricated

rod, thickness and the distance of the fibers from the rod’s neutral axis. Three-point-bending tests are

performed to determine the bending rigidities in the x and y-directions (Fig. 3). The directions x and

y construct a material frame defined with the alignment of the reinforcement fibers.

The torsional rigidity of the rod is determined by measuring the frequency of torsional oscillation

of the rod attached to a heavy weight at one end and fixed at the other. The system is designed to

oscillate around the rod’s centerline so the torsional rigidity is calculated from the measured frequency

as GJ = LJmωn
2. In this equation, Jm is the mass moment of inertia of the system around the rod’s

centerline and ωn is the measured natural frequency of the rotational oscillation. Table 2 shows the

characteristics of tested specimens made of polyurethane foam.

In the experimental study, the rod is attached to the 6-axis force balance on one end via a 10 cm

mast and is free at the other end. Normally, a cantilever rod under transverse loading is considered

to have a fixed position and slope at the fixed end. However, in our experiments, the rod is made

of a soft material which cannot be easily clamped to maintain a constant slope at its fixed end when

subjected to wind loading. Trying to clamp the fixed end of the foam rod pinches it, thus inducing a

rotation about its fixed end instead of a smooth deformation along its length. To take into account

this imperfection in the boundary condition, the fixed end is considered as a torsion spring in the

mathematical model. The torsion coefficient of the spring (ks) is then evaluated using the measured

in-plane bending moment and the rotation angle at the clamped end captured from photographs. A

linear relation is considered between the in-plane bending moment and the rotation angle:

MY = ksαs , (3)

where MY is the in-plane bending moment at the clamped end while Y is perpendicular to the flow

direction (Fig. 3). In addition, αs is the rotation angle at the clamped end.

The fixed end of the rod is rotated incrementally around its central axis in the wind tunnel using

the servo motor shown in Fig. 2. This is done to expose different alignments of the reinforcement

Table 2: Physical properties of tested specimen

Specimen L (cm) d (cm) (EI)y(Nm2)
(EI)y
GJ

(EI)y
(EI)x

Weight (g)
R1 30 3.17 0.0563 1.00 0.41 120
R2 28 2.54 0.0262 1.26 0.24 65
R3 25 1.58 0.0033 1.20 0.21 20
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Figure 3: Photograph of a flexible rod’s section made of polyurethane foam and reinforced with nylon fibers which have
an angle of incidence ψ with the flow. The angle of incidence at the clamped end is defined by ψ0.

direction at the clamped end with respect to the flow direction making an angle of incidence ψ0 (see

Fig. 3). For each angle of incidence, the drag scaling is evaluated for a range of flow velocities. A variety

of dimensions, structural rigidity and bending-torsion coupling are therefore considered to study the

effects of various parameters on the deformation of the flexible rod and its drag scaling. Measurements

are performed for flow velocities ranging from 5 ms−1 to 65 ms−1 and angles of incidence ranging from

0 to 90 degrees. The Reynolds number for the tests varies from approximately 1.5× 104 to 105 for R1

and R2 and from 5 × 103 to 6.5 × 104 for R3.

Images of the test specimens are captured in the wind tunnel using a DSLR camera. For the side

view, a 60×60 cm2 LED panel was placed behind the test specimen outside the wind tunnel to capture

high contrast images with a white background. For the frontal view, the camera was installed inside

the wind tunnel far upstream of the specimens. Consequently, due to the large wind loading on the

camera inside the wind tunnel, it was not possible to capture front view images in high velocities.

2.2. Theoretical Model

An elastic rod is a three-dimensional slender structure (Audoly & Pomeau, 2010) where its length,

L, is much larger than its two other dimensions. Kirchhoff’s theory of rods is a classic theory considering

finite displacements while assuming small strains (Dill, 1992). The rod is represented by a curve which

can deform in three-dimensional space. It can also twist around this curve. The curve is defined

as the centerline of the rod which is assumed inextensible (Audoly & Pomeau, 2010). It is assumed

that each cross section of the rod remains planar and normal to the centerline. Bending moments are

proportional to the curvatures, κx and κy and the twisting moment is proportional to the twist τ .
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Figure 4: Schematic of a rod connected to a fixed coordinate system with moving material frame attached to its centerline.

The constitutive relation for a bending and twisting rod made of isotropic material is then written as

(Audoly & Pomeau, 2010):

M = (EI)yκyex + (EI)xκxey +GJτez . (4)

where M is the vector of internal moments.

To track the rod twist, a material frame is defined as a moving coordinate system connected to

the centerline of the rod following its twist and deformation (Audoly & Pomeau, 2010). Herein, we

represent this frame by three unit vectors ei(s) for i = x, y and z. Since the material frame moves

and twists with the centerline of the rod, s is considered the distance in the curvilinear or Lagrangian

coordinate system along the rod’s centerline from its fixed end to its free end. The unit vector ez is

tangent to the rod’s centerline and ex and ey are principal directions of curvature in the cross sectional

plane (Audoly & Pomeau, 2010) as illustrated in Fig. 4. Due to the assumption of small strains, the

directions of the material frame are considered approximately orthonormal. The set comprising the

centerline and the material frame is sometimes called the Cosserat curve (Audoly & Pomeau, 2010).

The rod is connected to a fixed Eulerian coordinate system which is shown by X , Y and Z with unit

vectors eX , eY and eZ as illustrated in Fig. 4.

To evaluate the full state of a Kirchhoff rod, the rotation of the material frame around the centerline

should be considered. The direction cosines are a representation of the material frame’s rotation. They
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form a transformation matrix [c(s)] relating the material frame to the fixed frame as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ex

ey

ez

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13

c21 c22 c23

c31 c32 c33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

eX

eY

eZ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
, (5)

where cij is a direction cosine (Love, 1944). The three direction cosines of each row of the matrix

[c] form a unit vector representing a direction of the material frame (Love, 1944). Consequently, six

of the direction cosines are independent and the others can be calculated from these six independent

ones. Alternatively to direction cosines, quaternions could have been used (Lazarus et al., 2013). Fol-

lowing the approach explained in detail by Audoly & Pomeau (2010), the spatial derivative of each

direction of the material frame with respect to s is defined by:

e′x(s) = τ(s)ey(s) − κy(s)ez(s) , (6a)

e′y(s) = −τ(s)ex(s) + κx(s)ez(s) , (6b)

e′z(s) = κy(s)ex(s) − κx(s)ey(s) , (6c)

where a prime ( ′) denotes a spatial derivative with respect to s. Using this approach, nine first order

differential equations, six of which are independent, are derived (refer to Appendix 1).

The Kirchhoff equations for the equilibrium of forces and moments in a rod are written as:

F′(s) + p(s) = 0 , (7)

M′(s) + ez(s) ×F(s) + q(s) = 0 , (8)

where p(s) is the vector of external forces per unit length and q(s) is the vector of external moments

per unit length in the three directions of the material frame. F(s) is the vector of internal forces,

namely the shear forces Nx, Ny and the axial tension T , i.e.,

F = Nxex +Nxey + Tez . (9)

Finally, by expanding Eqn. 7 and Eqn. 8 and using Eqn. 6, we obtain six separate differential equations

which define the centerline curve of the rod.

The weight of the rod and the fluid loading are considered as external loading. The weight of

9



the rod is calculated as the rod’s mass m times the gravitational acceleration g acting in the Z-

direction. To evaluate the fluid loading on a deformed rod, we use Taylor’s semi-empirical formulation

(Taylor, 1952) of the pressure drag force on an oblique cylinder in three-dimensional flow. This

method was used successfully in previous reconfiguration studies on bending beams (Gosselin et al.,

2010; Luhar & Nepf, 2011). In the method, only the component of the flow velocity normal to the

cylinder centerline contributes to the pressure drag force. The normal force on an oblique cylinder

is proportional to sin2θ, where θ is the local angle that the cylinder centerline makes with the flow

velocity vector. Without loss of generality, we consider a flow aligned with the X-axis, thus:

cos θ = ez .eX∣ez ∣ ∣eX ∣ = c31 , sin θ =
√

1 − c231 . (10)

For Reynolds numbers ranging from 103 to 105, the drag coefficient of a cylinder is nearly constant.

Thus, the normal force per unit length on an oblique cylinder is calculated as:

pn = 1

2
ρdCD(Usinθ)2 , (11)

where CD is the drag coefficient obtained from experiments on rigid circular rods with the same

aspect ratio and surface roughness. For the range of the Reynolds number studied, the drag coefficient

measured for the rigid test rods is approximately 0.95. Although the fluid model is simple, we expect

that the complicated fluid mechanics and turbulence effects are reasonably accounted for by the drag

measured on the rigid structure. The drag on a deformed rod is therefore written in integral form:

D = 1

2
ρdCDU

2∫
L

0
sin3 (θ(s))ds . (12)

A drag coefficient is sufficient to define the fluid loading since the lift and pitching moment co-

efficients are zero on a circular rod section. Consequently, all external moments in Eqn. 8 are null.

The aerodynamic loading and the gravitational force on the rod are then decomposed into the x-, y-

and z-directions of the material frame to obtain the external forces in Eqn. 7. By expanding Eqns. 7

and 8 in three directions and introducing the external forces and moments, the Kirchhoff equations
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are written as:

dNx

ds
=Nyτ − Tκy − pn.c11 −mgL−1.c13 , (13)

dNy

ds
= Tκx −Nxτ − pn.c21 −mgL−1.c23 , (14)

dT

ds
=Nxκy −Nyκx −mgL−1.c33 , (15)

dκx

ds
= 1(EI)x [(EI)yκyτ −GJκyτ +Ny] , (16)

dκy

ds
= 1(EI)y [GJκxτ − (EI)xκxτ −Nx] , (17)

dτ

ds
= 1

GJ
[(EI)xκxκy − (EI)yκxκy] . (18)

To develop dimensionless equations of a deforming rod, the Cauchy number is introduced:

CY = CD

ρU2L3d

2(EI)y . (19)

The Cauchy Number CY represents the ratio of the fluid force to the minimum bending rigidity of the

flexible body (Chakrabarti, 2002; de Langre, 2008; Gosselin & de Langre, 2011). The square root of

the Cauchy number is similar to the dimensionless velocity (Alben et al., 2002, 2004) or the elasto-

hydrodynamical number (Schouveiler & Boudaoud, 2006) which do not include the drag coefficient in

their definition.

The reconfiguration number (Gosselin et al., 2010) and similarly the effective length (Luhar & Nepf,

2011) represent the effect of flexibility on the drag force. The reconfiguration number is defined as the

ratio of the drag force of the flexible body to the drag force of an equivalent rigid body:

R = D
1

2
ρU2CDdL

. (20)

It is a measure of the drag reduction of a flexible structure due to its flexibility. The Vogel exponent

relates the Cauchy number (Eqn. 19) to the reconfiguration number (Gosselin et al., 2010) as:

R∝ CY

ϑ
2 . (21)

The bending rigidity ratio, is defined as:

λ = (EI)y(EI)x , (22)
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where (EI)y and (EI)x are bending rigidities about the y and x-directions respectively. By defi-

nition, we take (EI)y < (EI)x. The flexible rods therefore have directional rigidity which causes a

bending-torsion coupling when transverse loads are not aligned with the x or y axes. Based on the

aforementioned directional rigidity, we redefine the twist-to-bend ratio (Eqn. 2) as:

η = (EI)y
GJ

. (23)

The following dimensionless parameters are also required:

s̄ = s/L κ̄x = κxL κ̄y = κyL τ̄ = τL ,

N̄x = NxL
2

(EI)y N̄y = NyL
2

(EI)y T̄ = TL2

(EI)y W = mgL
2

(EI)y .

By applying the external loading in the equations, the deformed shape of the rod’s centerline (Eqn. 13

to 18) can be defined by the following six dimensionless equations:

dN̄x

ds̄
= N̄yτ̄ − T̄ κ̄y −CY

√
1 − c231.c11 −W .c13 , (24)

dN̄y

ds̄
= T̄ κ̄x − N̄xτ̄ −CY

√
1 − c231.c21 −W .c23 , (25)

dT̄

ds̄
= N̄xκ̄y − N̄yκ̄x −W .c33 , (26)

dκ̄x

ds̄
= (λ − λ

η
)κ̄yτ̄ + λN̄y , (27)

dκ̄y

ds̄
= (1

η
− 1

λ
)κ̄xτ̄ − N̄x , (28)

dτ̄

ds̄
= (η

λ
− η)κ̄xκ̄y . (29)

As previously mentioned, the three direction cosines can be calculated from the six independent

ones. Arbitrarily, using Eqn. 6, the six equations defining the x- and z-directions of the material frame

are considered as the six independent equations. By coupling these six equations with Eqns. 24 to 29,

the full state of a deforming rod can be defined. The set of twelve ordinary differential equations is

solved with the bvp4c solver of MATLAB. The boundary conditions at the rod’s free end (s̄ = 1) and
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the rod’s fixed end (s̄ = 0) are:

N̄x(s̄ = 1) = 0 , N̄y(s̄ = 1) = 0 , T̄ (s̄ = 1) = 0 ,
κ̄x(s̄ = 1) = 0 , κ̄y(s̄ = 1) = 0 , τ̄(s̄ = 1) = 0 ,
c11(s̄ = 0) = cos(αs) cos(ψ0) , c12(s̄ = 0) = cos(αs) sin(ψ0) , c13(s̄ = 0) = − sin(αs) ,
c31(s̄ = 0) = sin(αs) , c32(s̄ = 0) = 0 , c33(s̄ = 0) = cos(αs) ,

where αs is the rotation of the clamp due to the imperfect boundary condition evaluated with Eqn. 3.

A continuation method is used to calculate the full state of the rod for a range of Cauchy numbers.

In this method, the solver uses an initial guess for all twelve variables of the governing equations for a

very small Cauchy number i.e. CY = 0.1. The solution of this step is then used as the initial guess for

the next iteration for a higher Cauchy number. This procedure is repeated until the Cauchy number

reaches its specified higher limit i.e. CY = 1000.
It is expected that the rod undergoes a bifurcation when ψ0 = 90. However, the developed MATLAB

code is unable to predict static instabilities for this angle of incidence because it cannot calculate

and follow more than one branch of the solution. Thus, for ψ0 = 90, a software package AUTO

(Doedel & Kernevez, 1986) is used with the same aforementioned governing equations and boundary

conditions. This software package has been developed to solve continuation and bifurcation problems.

According to the Implicit Function Theorem (Inayat-Hussain et al., 2003), the system of ordinary

differential equations presented in Eqn. 24 to Eqn. 29, has a stationary solution. In the software, using

a successive continuation approach, the governing equations are solved starting from an initial known

solution for a range of a continuation parameter values. In the present work, the Cauchy number is

considered as the continuation parameter. Bifurcation points are detected by seeking the singularities

in the Jacobian of the governing equations where eigenvalues change signs. A cross-comparison for

cases with ψ0 ≠ 90 between the MATLAB code and the AUTO solver shows identical results to 7

significant figures.

3. Results and Discussion

Three flexible rods made of polyurethane foam (Table 2) were tested in the wind tunnel to inves-

tigate the effect of bending and torsion on rod drag. In Fig. 5, highly contrasted photographs depict

the frontal and side views of specimen R3 in the wind tunnel for three flow velocities and three angles
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of incidence. In this figure, the thin solid lines represent the shape of an equivalent rod predicted us-

ing the mathematical model. The rod undergoes a two-dimensional bending or in-plane deformation

for ψ0 = 0. In this condition, the rod’s material frame with the minimum bending rigidity (EI)y is

aligned with the flow therefore the reconfiguration is in pure bending. The magnitude of deformation

increases with increasing flow velocity. For a non-zero angle of incidence, e.g. ψ0 = 45, where the

rod’s material frame is not aligned with the flow, the magnitude of the in-plane deformation is smaller

compared to the case ψ0 = 0. This is due to the increasing contribution of the reinforcement fibers to

the bending rigidity leading to less deformation. However, for non-zero angles of incidence, because of

asymmetric bending, the rod undergoes a three-dimensional deformation showing both in-plane and

out-of-plane deformation. This out-of-plane deformation creates a moment arm about the rod’s root

which twists the rod to realign it with the flow. For ψ0 = 90, the rod’s material frame is aligned

with the flow but with the maximum bending rigidity (EI)x. Because of symmetry, the rod does not

show an out-of-plane deformation at 10 ms−1. Compared with ψ0 = 0, at ψ0 = 90 the deformation

is smaller. At ψ0 = 90, for larger flow velocities (U = 20, 30 ms−1), the symmetry is broken and

significant out-of-plane deformation is observed. In this case, the rod undergoes a supercritical and

static pitchfork bifurcation which is discussed below. The difference between the experimental and

mathematical results is mainly due to imperfect boundary conditions in the experiments.

Figure 6a shows the variation of the X-component displacement (Xtip) of the tip of specimen R3

with increasing flow velocity for different angles of incidence. Experimental data points extracted from

photographs are also presented with markers for reference. To visualize the out-of-plane deformation,

the camera had to be placed inside the wind tunnel. Therefore, there are no experimental data

points for flow velocities higher that 30 ms−1 due to technical limitations in taking photographs. For

the three incidence angles, the X-component of the tip increases with flow velocity. However, the

rate of increase of Xtip becomes considerably small for high velocities therefore Xtip asymptotically

approaches a constant value. It is also seen that by increasing the angle of incidence, the magnitude

of the in-plane deformation decreases. This is due to the increasing bending rigidity with the angle of

incidence. Figure 6b shows the out-of-plane deformation of specimen R3 by providing the variation

of the tip’s Y -component displacement (Ytip) with velocity. For ψ0 = 0 the rod does not have an

out-of-plane deformation, thus Ytip = 0. For ψ0 = 30, 45 and 60, Ytip variation shows an initial increase

in the out-of-plane deformation. However, the experimental results and the mathematical predictions

show that Ytip starts to decrease as the rod twists back and becomes more aligned with the flow.
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Figure 5: Photographs of deformed shapes of the specimen R3. Thin lines represent the deformation of an equivalent
rod predicted by the mathematical model. The velocity units are ms−1.

For ψ0 = 90, Ytip is zero prior to a critical velocity of approximately 26 ms−1, thus the rod does not

undergo an out-of-plane deformation below this velocity. Beyond the critical velocity, Ytip undergoes

a jump to a maximum or minimum value approximately ±31 mm exhibiting a pitchfork bifurcation.

Ytip then decreases with flow velocity showing the rod becoming aligned with the flow. Prior to the

bifurcation point, the symmetric bending of the rod is stable but beyond that point, the rod loses

its stability and jumps to a stable branch to either sides showing a sudden out-of-plane deformation.

The post-bifurcation displacement is triggered by an infinitesimal out-of-plane deformation along with
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Figure 6: Mathematical evaluation of the in-plane and out-of-plane deformation of specimen R3 for three angles of
incidence by showing a) the variation of the tip’s X-component, b) the tip’s Y -component and c) the tip’s Z-component
with flow velocity. Some experimental data points are provided for reference as markers. Error bars represent the
standard deviation of the time fluctuations of the tip position.

the resulting moment arm about the root. This moment arm twists sections of the rod to an angle

of incidence smaller than 90, inducing a larger out-of-plane deformation. The larger out-of-plane

deformation amplifies the moment arm and this interaction continues until the rod finds a new three-

dimensional equilibrium state. Similarly to Fig. 5, for ψ0 = 90, the experimental and mathematical

results are not in exact agreement due to imperfect boundary conditions in the experiments which

advances the bifurcation.
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Figure 7: Time-averaged drag of the specimen R3 for a range of ψ0 from 0 to 90. Drag loading on an equivalent rigid
rod is provided as a line for reference. Error bars represent the standard deviation of the time fluctuations for series
ψ0 = 45. Time fluctuations are similar for other series.

Figure 7 presents the variation of the measured drag of the specimen R3 with increasing flow

velocity for a range of angles of incidence. The measured drag for an equivalent rigid structure is

also shown for reference. The drag on the rod increases with the flow velocity as well as the angle

of incidence. For low flow velocities, the drag on the flexible rod is similar to the drag force on an

equivalent rigid structure following the U2 scaling curve. However, with increasing flow velocity, the

drag force on the flexible rod increases in a less pronounced way than the equivalent rigid bar. This

divergence from the U2 scaling results from the increase in the static deformation. The divergence is

delayed by increasing the angle of incidence. Thus, the drag on the flexible rod increases monotonically

with the angle of incidence because of the increasing contribution of fibers to the rod rigidity.

The twisting moment at the root (MZ), simply referred to as the torque hereafter, is a direct

indicator of the magnitude of torsional reconfiguration. The torque is measured directly by the force

transducer as the twisting moment about the Z-axis. Figure 8 shows the variation of the torque with

flow velocity for a range of angles of incidence for R3. For ψ0 = 0, the torque is null because there is

no out-of-plane deformation to create a moment arm. For a non-zero angle of incidence, the torque

remains approximately zero for low flow velocities since the rod does not deform significantly to create

a moment arm. For U greater than approximately 10 ms−1, the deformation of the rod creates a

moment arm. The torque increases with increasing flow velocity as well as angle of incidence. This is
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Figure 8: Twisting moment at the root of the specimen R3 varying by the flow velocity and angle of incidence. The
mathematical evaluation of the root’s twisting moment is provided as lines for reference.

due to the combined increase in the moment arm and fluid loading. The reinforced rods under study

make it possible to control the amount of twisting reconfiguration by varying the angle of incidence.

In Fig. 8, the calculated torque for a rod equivalent to specimen R3 at the same angles is presented.

The mathematical model shows a good agreement with the experiments for ψ0 < 90. However, for ψ0 =
90, the mathematical model is shifted as compared to the experimental data points. The mathematical

model predicts that prior to a critical flow velocity of U ≈ 27 ms−1 the torque is null due to symmetric

bending. Beyond this critical flow velocity, the symmetry is broken due to the rod undergoing a

pitchfork bifurcation. The difference between the experimental and mathematical results for ψ0 = 90
is likely due to imperfect symmetry in the experiments which causes early bifurcation. This imperfect

symmetry may be caused by an error in the angle of incidence, imperfect clamped boundary condition,

heterogeneous mass distribution or a slight natural curvature in the rods. Fig. 8 shows that there is

a limiting behavior which leads to a bifurcation at ψ0 = 90. Moreover, the mathematical result for

ψ0 = 85 represents a better agreement with the experimental results for ψ0 = 90. This suggests that the
combined effect of the aforementioned factors particularly the angle of incidence may lead to a large

imperfection responsible for the inconsistency between the numerical and experimental results for ψ0

= 90.

3.1. Dimensionless Representation

The system of equations 24 to 29 representing the arbitrary large deformation of a rod is rendered

dimensionless by introducing the Cauchy number in Eqn. 19. From the experimental drag measure-

ments, the variation of the reconfiguration number of the specimens R3 with increasing Cauchy number

is presented in Fig. 9 for a range of ψ0 from 0 to 90 degrees. By definition, the dimensionless drag

18



CY

R

0.1

0.1

1

1 10 100

Rigid Bar

R ∝ CY
−0.33

ψ0 = 0
ψ0 = 15
ψ0 = 30
ψ0 = 45
ψ0 = 60
ψ0 = 75
ψ0 = 90

Model-ψ0 = 0
Model-ψ0 = 45
Model-ψ0 = 90

-0.33

Figure 9: Experimental drag scaling of the specimen R3 represented by the Cauchy number and the reconfiguration
number. The equivalent mathematical model for ψ0 = 0, 45 and 90 is provided as lines.

scaling of a rigid bar is presented with a horizontal line at R = 1 in this figure. It is seen that for small

Cauchy numbers the reconfiguration number is approximately 1 which means that the drag force on

the flexible rod is close to that acting on an equivalent rigid bar. Between CY ≈ 3 and 20, depending

on the angle of incidence, the reconfiguration number starts to diverge from that of the equivalent rigid

bar and decreases with increasing Cauchy number. This divergence is delayed by increasing the angle

of incidence due to the increasing contribution of the fibers in the bending rigidity against the flow.

The variation of R with CY calculated with the mathematical model is presented as lines in Fig. 9

for three angles of incidence. The reconfiguration number is 1 for small Cauchy numbers but it diverges

from R = 1 for Cauchy numbers greater than unity. Similarly to the experimental measurements, the

reconfiguration number decreases with the Cauchy number and increases with increasing angle of

incidence. All experimental drag measurements in dimensionless form are found to fall between the

two limiting mathematical curves for ψ0 = 0 and ψ0 = 90.
For Cauchy numbers greater than 100, the experimental data points for each angle of incidence

can be fitted with a power law which appears as a straight line on the R−CY log-log plot. The slope

of this line is the exponent of the power law. According to Eqn. 21, the Vogel exponent is twice this

slope. In Fig. 9, the slope of -0.33, equivalent to ϑ = −0.66 expected for pure bending (Alben et al.,

2002, 2004; Gosselin et al., 2010), is provided for reference. Table 3 presents the Vogel exponents
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Table 3: The Vogel exponent for a range of angle of incidence calculated from the experimental data points and the
mathematical simulation of R3

ψ0 0 15 30 45 60 75 90
ϑ (Exp. CY > 100) -0.70 -0.62 -0.66 -0.66 -0.68 -0.86 -0.86

ϑ (Math. 100 < CY < 300) -0.76 -0.76 -0.76 -0.76 -0.74 -0.74 -0.76
ϑ (Math. 300 < CY < 500) -0.72 -0.72 -0.72 -0.72 -0.70 -0.68 -0.68
ϑ (Math. 500 < CY < 1000) -0.7 -0.72 -0.72 -0.72 -0.70 -0.68 -0.68

Exp. Coeff. of Determination 0.88 0.85 0.76 0.97 0.82 0.94 0.95

calculated from the experimental data points for specimen R3 for different angles of incidence and

CY > 100. The Vogel exponent is found to vary from -0.62 to -0.86 and the average coefficient of

determination for the fitted data is 0.85. With the mathematical model, the predicted Vogel exponent

does not change significantly with the variation of angle of incidence. It remains approximately −0.7
for any angle of incidence and very high Cauchy numbers. However, in the experiments the predicted

mathematical Vogel exponent is not reached for all angles of incidence because for higher angles, the

maximum Cauchy number attainable in the wind tunnel is not sufficient to align the rod with the

flow. The small difference between the predicted Vogel exponent in our mathematical model and that

of previous studies in pure bending is due to the non-negligible weight of the rod in the present model

(see Luhar & Nepf (2011)).

The torsion of a rod alters its effective bending rigidity in the flow direction for non-zero angles of

incidence. The choice of (EI)y is therefore not representative when computing the Cauchy number

(Eqn. 19) for a non-zero angle of incidence. An alternative is proposed in the following which considers

the effect of torsion on the bending rigidity and the Cauchy number.

3.2. Equivalent Bending Rigidity

We seek a modification to the Cauchy number to account for the effective bending rigidity which

lies somewhere between (EI)x and (EI)y. This effective rigidity depends on the angle the material

frame makes with the flow, thus it depends on the incidence angle ψ0 and the torsional rigidity. A

dimensionless representation is proposed in the following which considers the effect of the angle of

incidence and the rigidity ratios (λ and η) on the equivalent bending rigidity and the Cauchy number.

The rigidity of a flexible rod comes from a contribution of the foam matrix and reinforcement fibers:

(EI)eq = (EI)matrix + (EI)fiber . (30)

For the configuration shown in Fig. 3, in the undeformed case and based on the parallel axis theorem,
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the equivalent bending rigidity is written as:

(EI)eq = (EI)matrix +Ef

nf

∑
1

If,0 +Af (r sinψ0)2 . (31)

where r is the radial distance of each fiber from the rod’s centerline, Af is the fiber sectional area, nf

is the number of fibers and If,0 is the second moment of area of each fiber around its neutral axis.

Since the fibers are very thin relative to the rods, EfIf,0 is negligible. Therefore the bending rigidity

around the two directions of the material frame can be approximated as:

(EI)y ≈ (EI)matrix , (32)

(EI)x ≈ (EI)matrix +Ef

nf

∑
1

Af r
2 . (33)

By subtracting Eqn. 32 from Eqn. 33 and introducing the result into Eqn. 31, the equivalent bending

rigidity can be written as:

(EI)eq = (EI)y + [(EI)x − (EI)y] sin2 ψ0 , (34)

where [(EI)x − (EI)y] sin2ψ0 is the contribution of the reinforcement fibers in the equivalent bending

rigidity. This could be an improved definition of the bending rigidity to construct the Cauchy number.

However, according to Eqn. 18 the reinforced rod twists proportionally to:

ζ = (EI)x − (EI)y
GJ

= η
λ
(1 − λ) . (35)

As a result, the equivalent bending rigidity of the rod varies with the twist angle. When the rod bends

in the flow, it also reorients to bend in its most flexible direction by aligning the x-direction of the

material frame with the flow. Therefore the angle of incidence at each section of the rod may become

smaller than the initial angle of incidence ψ0. This decreases the contribution of the reinforcement

fibers in the bending rigidity and consequently reduces the overall bending rigidity of the rod. We

therefore propose the following ansatz for an improved equivalent bending rigidity definition:

(EI)eq = (EI)y + [(EI)x − (EI)y] sin2 ψ0

1 + ζβ , (36)

where β > 0 is an exponent to be defined. In Eqn. 36, the bending-torsion coupling parameter ζ varies
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the contribution of the reinforcement fibers in the equivalent bending rigidity. If ζ ≪ 1, the rod is

rigid in torsion and the correction found in Eqn. 34 holds. If ζ ≫ 1, the rod twists freely, it reorients

under the slightest load to bend in its most flexible direction and (EI)eq ≈ (EI)y. Assuming small

deformations, the curvatures κx and κy are approximated as:

κx = d
2 (weq sinψ0)

ds2
, (37)

κy = d
2 (weq cosψ0)

ds2
, (38)

where weq is the deformation in the flow direction due to a uniform pressure. This deformation is

calculated from linear Euler-Bernoulli beam theory as:

weq = pns
2[6L2 − 4Ls + s2]
24(EI)eq . (39)

The equivalent bending rigidity is a bulk property. By substituting Eqn. 37, 38 and 39 in Eqn. 18 and

rewriting it in integral form, we obtain the average twist:

τavg = 1

2
ζ sin (2ψ0)∫ L

0
(d2weq

ds2
)2 ds

= pn
2

40
L5 sin (2ψ0) ζ

[(EI)eq]2 , (40)

Equation 40 shows that for a given load, the average twist remains constant if (EI)eq ∝ ζ1/2 which

leads us to choose β = 1/2. An equivalent Cauchy number is then defined as:

C∗Y = CD

ρU2L3d

2(EI)eq , (41)

The variation of R with CY (Eqn. 19) for the three flexible rods (Table 2) and for a range of

angle of incidence from 0 to 90 is presented in Fig. 10a. As seen in the figure, the reconfiguration

number is approximately 1 for all three specimens for small Cauchy numbers, which means that the

drag is close to that of the equivalent rigid bar. Starting from mid-range Cauchy numbers between

CY ≈ 5 and 20, the reconfiguration number decreases with increasing Cauchy number. The maximum

reachable Cauchy number is less than 100 for the rods R1 and R2 due to the limitation of the test

equipment. The slope of the log-log plot is therefore less than -0.33 for these two specimens. The
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Figure 10: The reconfiguration number of the three specimens (table 2) for a range of ψ between 0 and 90 plotted versus
a) the Cauchy number and b) the equivalent Cauchy number to find a generic representation of the drag scaling. The
Mathematical models for ψ0 = 0 and ψ0 = 90 are presented as lines.

variation of R with CY using the mathematical model is presented as lines for R3 in Fig. 10a. It is

found that all the experimental drag measurements fall between the two limiting curves for ψ0 = 0 and

90. However, the measurements for the three specimens do not collapse on a single curve.

Figure 10b presents the dimensionless drag measurements for all three specimens obtained using

the equivalent Cauchy number (Eqn. 41) for the range of angles of incidence from 0 to 90. The results

show that the reconfiguration number is approximately 1 for small equivalent Cauchy numbers and

starts to diverge from R = 1 near C∗Y ≈ 2 to 8. It decreases with increasing equivalent Cauchy number

and a constant power law exponent is reached for large equivalent Cauchy numbers. In the figure, the

R−C∗Y plots of the mathematical model for specimen R3 for ψ0 = 0 and 90 are presented for reference.

As shown, all experimental results effectively collapse onto a single curve regardless of test conditions.

The single curve, representing the two-dimensional bending deformation for ψ0 = 0, can quantify the

drag scaling of bending and twisting rods independently of their geometry, material properties and

angle of incidence. This means that using the right set of dimensionless numbers (R and C∗Y ), the

three-dimensional reconfiguration of a rod and the bending deformation of a beam are similar, both

governed by a single parameter (C∗Y ). In this representation, the Vogel exponent of a bending-twisting

rod approaches the Vogel exponent of the two-dimensional bending case, -0.66.

To have a better understanding of the torsion of the rod along its length, the variation of the

dimensionless twist (τ̄ ) along the dimensionless length of the rod is studied using the mathematical

model. The dimensionless twist represents the variation of the sectional angle of incidence. Figure 11
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Figure 11: Mathematical demonstration of torsion of R3 along its length by plotting the variation of τ̄ with s̄, C∗
Y

and
ψ0.

shows the variation of the dimensionless twist for specimen R3 along its length for small to very high

equivalent Cauchy numbers and two angles of incidence. This figure is an illustration of the magnitude

of torsion at each section of the rod. By definition, the area under each curve in Fig. 11 gives the total

twist angle of the rod’s tip relative to its root.

The figure shows that most of the torsion occurs close to the fixed end of the rod. In addition, as the

equivalent Cauchy number increases, the generated torsion also increases close to the fixed end. The

reason being that as the Cauchy number increases, sections of the rod far from the fixed end become

aligned with the flow. As a result, no significant moment arm is created about these sections. At the

same time, this aligned part of the rod acts as a moment arm for the sections close to the fixed end.

As the equivalent Cauchy number increases, more sections become aligned with the flow increasing the

torsion near the fixed end. In general, τ̄ at the rod’s root increases with the equivalent Cauchy number

due to increasing fluid loading and out-of-plane deformation. For ψ0 = 45, the maximum dimensionless

twist is found at the fixed end of rod. However, for ψ0 = 90, the location with the maximum torsion

is found within the first quarter of the rod; the maximum torsion location then moves towards to the

fixed end as the equivalent Cauchy number increases. The reason is probably due to the non-uniform

out-of-plane deformation of the rod for ψ0 = 90 (see for instance Fig. 5). As seen in Fig. 5, generally

the rod has an out-of-plane deformation towards the right side. However, for ψ0 = 90 and U = 30 ms−1

(≈ C∗Y = 30), the rod deforms to the left up to a certain point along its length and beyond this point, it

twists and bends to the right. Thus, for ψ0 = 90, τ̄max is found close to this turning point rather than

the root. This also explains the reduction of the torque for ψ0 = 90 compared to the smaller angles in

Fig. 8 since the torque at the root in ψ0 = 90, is not the maximum twisting moment along its length.

24



To better understand the rod’s twist, the following torsion length (ℓ) is proposed:

ℓ = GJψ0

MzL
, (42)

where ψ0 is in radians. The torsion length ℓ is the dimensionless length the rod would need to twist

by an angle ψ0 under the torque Mz measured at its root. Figure 12 shows the variation of the torsion

length of specimen R3 with increasing equivalent Cauchy number on a logarithmic scale. For small

CY , the torsion length is large and thus the rod does not twist to align itself with the flow. With

increasing equivalent Cauchy number, the torsion length decreases, corresponding to an increase in

torsion. As CY is increased further, ℓ becomes smaller than unity. The rod can thus align its most

flexible direction with the flow and the torsion increases and becomes more localized at the root.

This is due to the increasing out-of-plane deformation and moment arm magnitude which lead to a

larger torque. Once the rod is twisted and aligned with the flow, the rod shows a reconfiguration

similar to a bending beam. For ψ0 = 90, the torsion length is infinite prior to the bifurcation because

the deformation is symmetric, but the torsion length decreases suddenly beyond a critical equivalent

Cauchy number. Once the bifurcation occurs, a moment arm is created which leads to a larger torque

and smaller torsion length. As seen in Fig. 12, in the asymptotic regime of large deformation, the

torsion length scales as ℓ ∝ C∗Y
−0.33. This is interesting because as we observed in Fig. 10, the same

scaling emerges for R as a function of C∗Y .

4. Conclusion

The three-dimensional reconfiguration of plants was studied using flexible rods with structural

anisotropy. The work aims to answer the following question: What is the effect of torsion on recon-

figuration? It was shown that reinforcing the flexible rods in one direction leads to coupling between

torsional and bending deformation. This allowed us to benefit from the simplicity of circular rods

while being able to alter the bend-twist coupling. As observed in the experiments, the drag scaling of

a flexible rod diverges from a U2 relation with increasing magnitude of deformation.

It was shown that the direction of reinforcement with respect to the flow (ψ0) is a key parameter

in the effective bending rigidity of the rod. Based on this parameter, the definition of the Cauchy

number was modified by introducing an equivalent bending rigidity. It was concluded that the equiv-

alent Cauchy number and the reconfiguration number effectively characterize the three-dimensional
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Figure 12: Experimental evaluation of the torsion length of specimen R3 varying with the equivalent Cauchy number.
The mathematical model is provided as lines for comparison.

reconfiguration of the rod as a beam undergoing a two-dimensional bending.

The Vogel exponent of the reconfiguring rod approaches −0.7 which is the exponent of bending

beams and plates considering their weight. This shows that the three-dimensional reconfiguration

of the rod becomes approximately two-dimensional in the regime of very large deformations. It is

concluded that in the large deformation regime, torsion has no effect on the Vogel exponent since the

exponent was found to be independent of the angle of incidence.

A mathematical model was developed by coupling the Kirchhoff theory of rods with a semi-empirical

drag formulation. The model predicted that the Vogel exponent reaches -0.7 for high Cauchy numbers

independently of the angle of incidence, the rod’s material and geometrical characteristics. A pitchfork

bifurcation was also predicted for ψ0 = 90. However, due to imperfect symmetry and flow perturbations

in the experiments, the mathematical model overestimated the critical velocity at which bifurcation

occurs. It would be interesting to evaluate and implement the imperfection of the boundary conditions

to obtain a better prediction of the bifurcation.

While this paper focused on the effect of torsion on the reconfiguration of flexible rods, studying

the three-dimensional reconfiguration of slender lifting surfaces might be of interest. In addition,

the present work considers a rod which is initially undeformed. It would be of interest to study the

reconfiguration of a rod with a pre-twisted material frame along its length. This case can be found in
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the structure of many plants with chiral morphology.
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Appendix 1

The direction cosines are a representation of the material frame’s rotation. They are the cosines

of the angles between a vector and the three directions forming the fixed coordinate system. Since

the material frame and the fixed frame have three directions each, nine direction cosines are needed

to define the material frame. As detailed by Audoly & Pomeau (2010), the spatial derivative of ei(s)
with respect to s is defined by:

e′i(s) = Ω(s) × ei(s) , (43)

where i = x, y and z. The parameter Ω(s) is the rotation velocity or the Darboux vector defined by:

Ω(s) = κx(s)ex(s) + κy(s)ey(s) + τ(s)ez(s) . (44)

By introducing Eqn. 44 in Eqn. 43, spatial derivatives of the directions of the material frame are

calculated as Eqn. 6. Each direction of the material frame is defined by the vector contained in a row

of the matrix [c] (Eqn. 6), e.g. ex = (c11, c12, c13). Therefore, by expanding Eqn. 6, we have:

dc11

ds
= τc21 − κyc31 dc12

ds
= τc22 − κyc32 dc13

ds
= τc23 − κyc33 , (45)

dc21

ds
= −τc11 + κxc31 dc22

ds
= −τc12 + κxc32 dc23

ds
= −τc13 + κxc33 , (46)

dc31

ds
= κyc11 − κxc21 dc32

ds
= κyc12 − κxc22 dc33

ds
= κyc13 − κxc23 . (47)
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